首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2018年   1篇
  2017年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1989年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The effects of eight different sodium salts on the activation of spores of Bacillus stearothermophilus NGB101 at 30°C were examined. Sodium nitrite was a potent activator spores of NGB101. Complete activation of spore populations was obtained after 6 h or less at 30°C. Activation of spores of NGB101 in solutions of sodium nitrite, like activation in distilled water, was temperature dependent, with optimal activation at 30°C. While a potent activator of spores of NGB101 at 30°C, sodium nitrite was ineffective as an initiator of germination at 65°C. Activation of spores of NGB101 produced marked increases in colony forming spores compared with nonactivated populations. Spore populations activated in solutions of sodium nitrite gave higher plate counts compared with spores activated in distilled water.  相似文献   
2.
The spore forming Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, has achieved notoriety due to its use as a bioterror agent. In the environment, B. anthracis exists as a dormant endospore. Germination of endospores during their internalization within the myeloid phagocyte, and the ability of those endospores to survive exposure to antibacterial killing mechanisms such as superoxide (O(2)*-, is a key initial event in the infective process. We report herein that endospores exposed to fluxes of O(2)*- typically found in stimulated phagocytes had no effect on viability. Further endospores of the Sterne strain of B. anthracis were found to scavenge O(2)*-, which may enhance the ability of the bacterium to survive within the hostile environment of the phagolysosome. Most intriguing was the observation that endospore germination was stimulated by a flux of O(2)*- as low as 1 microM/min. Data presented herein suggest that B. anthracis may co-opt O(2)*- which is produced by stimulated myeloid phagocytes and is an essential element of host immunity, as a necessary step in productive infection of the host.  相似文献   
3.
Phagocytosis of killed endospores by glass adherent peripheral human mononuclear cells was studied. Phagocytosis continued through 30 minutes of incubation. No difference in rates of ingestion could be detected when cells from coccidioidin-reactive and nonreactive subjects were compared although both groups ingested endospores more avidly than latex particles.  相似文献   
4.
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01–0.2 min−1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3–0.4 min−1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.  相似文献   
5.
Anthrax is a disease of herbivores caused by the gram-positive bacterium Bacillus anthracis. It can affect cattle, sheep, swine, horses and various species of wildlife. The routes for the spread among wildlife are reviewed. There are three kinds of human anthrax – inhalation, cutaneous, and intestinal anthrax – which differ in their routes of infection and outcomes. In the United States, confirmation of cases is made by the isolation of B. anthracis and by biochemical tests. Vaccination is not recommended for the general public; civilians who should be vaccinated include those who, in their work places, come in contact with products potentially contaminated with B. anthracis spores, and people engaged in research or diagnostic activities. After September 11, 2001, there were bioterrorism anthrax attacks in the United States: anthrax-laced letters sent to multiple locations were the source of infectious B. anthracis. The US Postal Service issued recommendations to prevent the danger of hazardous exposure to the bacterium. B. anthracis spores can spread easily and persist for very long times, which makes decontamination of buildings very difficult. Early detection, rapid diagnosis, and well-coordinated public health response are the key to minimizing casualties. The US Government is seeking new ways to deter bioterrorism, including a tighter control of research on infectious agents, even though pathogens such as B. anthracis are widely spread in nature and easy to grow. It is necessary to define the boundary between defensive and offensive biological weapons research. Deterring bioterrorism should not restrict critical scientific research. Electronic Publication  相似文献   
6.
The aim of this study was to develop a PCR-based rapid method to detect Bacillus cereus group cells from paper and cardboard. Primers targeting the 16S rDNA and real-time PCR with SYBR green I detection were used in order to be able to also quantify the target. Both autoclaved cardboard samples spiked with B. cereus vegetative cells or spores and naturally contaminated paper and cardboard samples were studied. Results were compared with culturing verified by commercial (API) tests. Several different methods were tested for DNA isolation from the paper and cardboard samples. Two commercial kits intended for soils, the UltraClean soil DNA kit and the FastDNA spin kit for soil, gave the most reproducible results. In spiked samples, the average yield was 50% of added vegetative cells, but spore yield was only about 10%. PCR results from adding vegetative cells correlated with added colony-forming unit (cfu) values (r=0.93, P <0.001) in the range 100–10,000 cfu g–1. Three out of nine studied paper and cardboard samples contained B. cereus group bacteria, based both on culturing and real-time PCR. The numbers were 102–103 bacteria g–1; and PCR gave somewhat higher results than culturing. Thus, real-time PCR can be used as a rapid semi-quantitative method to screen paper and cardboard samples for contamination with B. cereus group bacteria.  相似文献   
7.
Sporosarcina halophila forms endospores. Electron micrographs revealed ultrastructural similarity to spores of S. ureae. Spore germination indicated by loss of refractility, darkening, swelling and formation of new vegetative cells was followed by phase contrast light microscopy. To induce spore germination, the endospores needed to be heat avtivated. After activation, they were inoculated into nutrient broth medium supplemented with sea-water. Double concentrated sea-water was found to be optimal for germination. Similar to other bacterial endospores, the spores were found to be resistant to heat and ethanol. An ultraviolet absorbing substance was isolated from suspensions of free spores; it was identified to be pyridine-2,6-dicarboxylic acid (DPA) usually present in bacterial spores. DPA was detected in amounts ranging from 5–7% of the spore dry weight; it was not detected in extracts of vegetative cells.Abbreviation DPA 2,6-pyridine-dicarboxylic acid  相似文献   
8.
A wide range of analytical methods are available for the detection and identification of biological warfare agents. These technologies are often hampered in their performance when the inactivated samples are analyzed. To work with pathogens outside of biosafety level 3 laboratories, a complete inactivation is mandatory when appropriate protection equipment is unavailable. When methods of inactivation are used, the detection of bacteria becomes more difficult. In contrast to measuring viable organisms, inactivation steps can have a massive impact on the intrinsic cellular information. This study examined the effects of autoclaving and chemical inactivation methods on Bacillus spores using biological warfare detection setups like real‐time PCR and MALDI‐TOF‐MS. Here, the inactivation of Bacillus atrophaeus spores with formaldehyde, which is a suggested model for biological warfare spore agents, was compared with other inactivation reagents like Wofasteril®E400, a commercially available decontaminant based on peroxyacetic acid. With Wofasteril®E400 the critical factor of inactivation time was reduced to about 15 min and a limit of detection of 8500 spores by PCR was still measurable using five‐times‐washed spores. It has also been shown that MALDI‐TOF‐MS peak information can be hampered by inactivation methods.  相似文献   
9.
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as “S-layer”, bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.  相似文献   
10.
Abstract Three out of the four described halophilic obligately anaerobic bacteria of the family Haloanaerobiaceae hydrolyze d -BAPA (N'-benzoyl- d -arginine-p-nitroanilide), while showing no or little l -BAPA hydrolyzing activity. This property was shown earlier to be characteristic only of non-halophilic Gram-positive endospore-forming bacteria of the genera Bacillus and Clostridium . These results suggest that Haloanaerobium praevalens , which has never been shown to produce endospores, but was shown to be related to the endosphere-forming representatives of the Haloanaerobiaceae on the basis of 16S rRNA nucleotide sequence data, shares other properties characteristics of the endospore-forming bacteria. Neither significant d -BAPA nor l -BAPA hydrolyzing activity was found in Sporohalobacter lortetii .  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号