首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2011年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
描述了一件象属( Elephas) 的右上臼齿化石。标本产自查谟紧靠上西瓦立克亚群巨砾岩组( Boulder Conglomerate Formation) 之上的砂质、粉砂质泥岩夹砾石层中,化石地点位于查谟市南10 km,Kharian 村北约500 m 处。根据齿板数、齿脊频率、釉质层厚度、冠高指数、绝对大小和齿长/齿高指数等牙齿形态参数,暂时将之归为 Elephas cf. E. maximus indicus。还简短讨论了象属的地理分布和地质时代。  相似文献   
2.
The vomeronasal organ (VNO) is a chemosensory structure of the nasal septum found in most tetrapods. Although potential behavioural correlates of VNO function have been shown in two of the three elephant species, its morphology in Loxodonta africana has not been studied. The development of the VNO and its associated structures in the African elephant are described in detail using serially sectioned material from fetal stages. The results show that many components of the VNO complex (e.g. neuroepithelium, receptor‐free epithelium, vomeronasal nerve, paravomeronasal ganglia, blood vessels, vomeronasal cartilage) are well developed even in a 154‐day‐old fetus, in which the VNO opens directly into the oral cavity with only a minute duct present. However, the vomeronasal glands and their ducts associated with the VNO were developed only in the 210‐day‐old fetus. Notably, in this fetus, the vomeronasal–nasopalatine duct system had acquired a pathway similar to that described in the adult Asian elephant; the VNOs open into the oral cavity via the large palatal parts of the nasopalatine ducts, which are lined by a stratified squamous epithelium. The paired palatal ducts initially coursed anteriorly at an angle of 45° from the oral recess and/or the oral cavity mucosa, and merged into the vomeronasal duct. This study confirms the unique characteristics of the elephant VNO, such as its large size, the folded epithelium of the VNO tube, and the dorsomedial position of the neuroepithelium. The palatal position and exclusive communication of the VNO with the oral cavity, as well as the partial reduction of the nasopalatine duct, might be related to the unique elephantid craniofacial morphogenesis, especially the enormous growth of the tusk region, and can be seen as autapomorphies.  相似文献   
3.
The survey of proboscides remains recovered from Kollé quarries (Northern Chad) gives evidence of a new taxa of Elephantidae. The anatomical and cladistic analysis permit to consider this new taxa as the sister group of Stegotetrabelodontinae. This new discovery reinforces, once again, the remarkable biodiversity of this group. The proboscidean's association observed in these layers and the evolutionary state of teeth permit us to date the Kollé fossiliferous sector close to the early Pliocene.  相似文献   
4.
The phylogenetic relationships between recent Elephantidae (Proboscidea, Mammalia), that is to say extant elephants (Asian and African) and extinct woolly mammoth, have remained unclear to date. The prevailing morphological scheme (mammoth grouped with Asian elephant) is either supported or questioned by the molecular results. Recently, the monophyly of woolly mammoths on mitochondrial grounds has been demonstrated (Thomas, et al., 2000), but it conflicts with previous studies (Barriel et al., 1999; Derenko et al., 1997). Here, we report the partial sequencing of two mitochondrial genes: 128 bp of 12S rDNA and 561 bp of cytochrome b for the Lyakhov mammoth, a 49,000-year-old Siberian individual. We use the most comprehensive sample of mammoth (11 sequences) to determine whether the sequences achieved by former studies were congruent or not. The monophyly of a major subset of mammoths sequences (including ours) is recovered. Such a result is assumed to be a good criterion for ascertaining the origin of ancient DNA. Our sequence is incongruent with that of Yang et al. (1996), though obtained for the same individual. As far as the latter sequence is concerned, a contamination by non-identified exogenous DNA is suspected. The robustness and reliability of the sister group relation between Mammuthus primigenius and Loxodonta africana are examined: down-weighting saturated substitutions has no impact on the topology; analyzing data partitions proves that the support of this clade can be assigned to the most conservative phylogenetic signal; insufficient taxonomic and/or characters sampling contributed to former discordant conclusions. We therefore assume the monophyly of "real mammoth sequences" and the (Mammuthus, Loxodonta) clade.  相似文献   
5.
Characters associated with the mandibular canal are differently distributed amongst proboscidean lineages and provide useful information on the systematics and relationships of proboscideans. The aim of this paper is to describe the pattern of the mandibular canal and its associated foramina in proboscideans in order to fully appreciate the extent of interspecific variation of these structures within the group and to discuss its systematic and phylogenetic value. Outgroup comparison indicates that the condition presented by the basal proboscidean Phosphatherium is morphotypic for proboscideans. Primitive proboscidean characters are: the low position of the mandibular foramen, and its crescent‐shaped outline, the occurrence of a coronoid foramen (canal), the occurrence of two lateral mental foramina, the posterior one at the level of (or slightly behind) the posterior margin of the symphysis, the anterior one in a more distal position, the absence of a medial mental foramen (MMF), the mandibular canal set just below the tooth row. The occurrence of a single lateral mental foramen may represent a shared derived character of Daouitherium, Numidotherium, and Barytherium. A unique derived feature of the Elephantinae mandible is the occurrence of a medial mental foramen on the medial side of the incisive part of the mandible. MMFs have never been observed in other proboscideans excluding elephantines. The very high frequency of MMFs observed in Mammuthus meridionalisMammuthus trogontheriiMammuthus primigenius (>93 per cent of the studied specimens) could be considered a synapomorphy of this group. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 391–413.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号