首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2004年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.Abbreviations EOG electro-olfactogram - VNO vomeronasal organ  相似文献   
2.
Electro-olfactograms were used to determine sensitivity and specificity of olfactory organs of female sea lampreys (Petromyzon marinus) to four bile acids: 3-keto petromyzonol sulfate and 3-keto allocholic acid from spermiating males and petromyzonol sulfate and allocholic acid from larvae. Spermiating male bile acids are thought to function as a mating pheromone and larval bile acids as a migratory pheromone. The response threshold was 10–12 mol l–1 for 3-keto petromyzonol sulfate and 10–10 mol l–1 for the other bile acids. At concentrations above 10–9 mol l–1, the sulfated bile acids showed almost identical potency, as did the non-sulfated bile acids. The two sulfated bile acids were more potent than the two non-sulfated ones. In addition, 3-keto petromyzonol sulfate and water conditioned with spermiating males induced similar concentration-response curves and response thresholds. Cross-adaptation experiments demonstrated that the sulfated and non-sulfated bile acids represent different odors to the olfactory epithelium of females. Further exploration revealed that 3-keto petromyzonol sulfate represents a different odor than petromyzonol sulfate, while 3-keto allocholic acid and allocholic acid represent the same odor. Results indicate that male-specific bile acids are potent and specific stimulants to the female olfactory organ, supporting the previous hypothesis that these bile acids function as a pheromone.Abbreviations 3kACA 3-keto allocholic acid - 3kPZS 3-keto petromyzonol sulfate - ACA allocholic acid - ANOVA analysis of variance - ELISA enzyme-linked immunosorbent assay - EOG electro-olfactogram - PIR percent initial response - PZS petromyzonol sulfate - SMW spermiating male washings  相似文献   
3.
Electro-olfactogram (EOG) recordings in response to amino acid stimulation were made from both control and experimental olfactory mucosae following unilateral axotomy. The recorded EOG amplitudes, amino acid stimulus relative effectiveness and dose-response relations for control and experimental mucosae were comparable in all pre- and postoperative recordings. Semi-thin investigations of olfactory mucosae showed degeneration of olfactory receptors but indicated that intact receptors were also present. SEM of olfactory mucosae revealed that ciliated receptor cells were present in both axotomized and control sides on postoperative days, whereas microvillous receptors completely degenerated and did not regenerate until 7 weeks post axotomy. The present findings along with previous behavioral observations suggest at least three possible sources of the EOGs recorded from the experimental olfactory mucosae following olfactory nerve transection: (1) young olfactory receptor neurons whose axons had not yet reached the region of the transected olfactory nerve; (2) newly-emerged olfactory receptor neurons; and (3) olfactory receptor neurons that had not degenerated.Abbreviations EOG electro-olfactogram - SEM scanning electron microscopy (micrograph)  相似文献   
4.
Although it is well known that responses to ethologically-relevant odors are influenced by endocrine factors, it has not been clear whether these hormonal effects might be mediated at the level of the peripheral sensory neurons. During an investigation of hormonal pheromones in South-East Asian Cyprinids, we observed that in adult male Puntius schwanenfeldi, an androgen-dependent sex character was correlated with electro-olfactogram response to a putative sex pheromone (15-keto-prostaglandin-F2 ). As secondary sex characteristics are androgen-dependent in male teleosts, this observation suggested a functional relationship between androgen and peripheral olfactory receptor response. We therefore investigated this possibility using androgen implants.In laboratory-raised juveniles, androgen treatment increased the magnitude and sensitivity of electro-olfactogram response to prostaglandin without affecting responses to other odors. Furthermore, androgen-treated juveniles performed pheromone-dependent sex behavior in the presence of a prostaglandin-injected stimulus fish. For the first time in vertebrates, the present data demonstrate hormone-induced plasticity of primary chemosensory neuronal responsiveness to an ethologically relevant compound.Abbreviations EOG electro-olfactogram - PGF Prostaglandin-F2 - 15KPGF 15-keto-prostaglandin-F2 - 17,2 1P 17,21 -dihydroxy-4-pregnen-3-one - MT 17-methyltestosterone - 11KA 11-ketoandrostenedione - 11KT 11-ketotestosterone - DHT 5-dihydrotestosterone  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号