首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   27篇
  国内免费   12篇
  2024年   1篇
  2023年   7篇
  2022年   3篇
  2021年   10篇
  2020年   12篇
  2019年   13篇
  2018年   20篇
  2017年   14篇
  2016年   15篇
  2015年   14篇
  2014年   41篇
  2013年   54篇
  2012年   10篇
  2011年   14篇
  2010年   12篇
  2009年   20篇
  2008年   28篇
  2007年   17篇
  2006年   12篇
  2005年   12篇
  2004年   9篇
  2003年   12篇
  2002年   15篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有453条查询结果,搜索用时 15 毫秒
1.
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn–turn and phosphate–nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic ‘crab-claw’ movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin ‘native state.’ Implications for docking protocols are derived.  相似文献   
2.
Summary Immuno-gold labeling at the electron-microscopy level was used to investigate the distribution of tropoelastin in the chick eye. Intense staining was found in the amorphous part of mature elastic fibers in different regions of the organ. In elaunin fibers, both the amorphous core and the surrounding microfibrils were clearly labeled. In addition, reactive sites were detected in the oxitalan fibers of the stroma of the cornea and in Descemet's membrane, which showed a gradient of reactive sites increasing from the center toward the periphery. Oxitalan fibers of the stroma often fused with Descemet's membrane; the pattern of immunological staining suggested a continuity between the two structures. In the ciliary zonule, labeling for tropoelastin was observed in discrete areas on the bundles of microfibrils. The results show a complex structural organization of elastic tissue; this may be important in endowing the various parts of the eye with different mechanical properties.  相似文献   
3.
Summary Fibrous components other than collagen fibrils in the reticular fiber of mouse lymph node were studied by electron microscopy. Bundles of microfibrils not associated by elastin and single microfibrils dispersed among collagen fibrils were present. The diameter of the microfibrils was 13.29±2.43 nm (n=100). Elastin-associated microfibrils occurred at the periphery of the reticular fiber. Elastin was enclosed by microfibrils, thus forming the elastic fiber, which was clearly demonstrated by tannic acid-uranyl acetate staining. In the reticular fiber of lymph nodes, the elastic fiber consisted of many more microfibrils and a small amount of elastin. These microfibrils, together with the collagen fibrils, may contribut to the various functions of the reticular fibers.  相似文献   
4.
Elongation of a helical bacterial flagellar filament subjected to fluid flow was calculated on the assumption that one end of the filament is firmly attached to a substratum. It was found that the quantity [E(d/2 pi r)2 + 2 mu] could be determined by measuring the elongation at various flow rates, where E is Young's modulus, mu the modulus of rigidity, r the radius of the helix, and d the helical pitch. Experiments were carried out to determine the above quantity for Salmonella flagellar filaments assuming a close-coil form. Because the above quantity is almost equal to 2 mu for a helical form with a large radius/pitch ratio, we were able to determine the modulus of rigidity for this kind of flagellar filament from plots of elongation vs. flow rates. The modulus of rigidity was determined to be about 1 X 10(11) dyn/cm2, i.e., 2 orders of magnitude larger than the previously estimated value.  相似文献   
5.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
6.
To evaluate the effects of exercise on aortic wall elasticity and elastic components, young male rats underwent various exercise regimes for 16 weeks. In the exercised rats, the aortic incremental elastic modulus decreased significantly when under physiological strain. The aortic content of elastin increased significantly and the calcium content of elastin decreased significantly in the exercised group. The accumulated data from the exercised and sedentary groups revealed that the elastin calcium content was related positively to the incremental elastic modulus. We concluded that physical exercise from an early age decreases the calcium deposit in aortic wall elastin and that this effect probably produced in the exercised rats a distensible aorta.  相似文献   
7.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   
8.
Improving the statistical mechanical model of Jacobs et al. (Jacobs, R.E., Hudson, B. and Andersen, H.C. (1975) Proc. Natl. Acad. Sci. U.S. 72, 3993–3997) we have constructed a model which describes not only the temperature but also the external field dependence of the membrane structure of phospholipid bilayers. In addition to the interactions between head groups, between hydrocarbon chains, and the internal conformational energy of the chains (which were considered in Jacobs' model), our model includes the energy of deformation and the field energy as well.By the aid of this model we can explain the phenomenon of dielectric breakdown, the non-linearity of current-voltage characteristics, and the mechanism of membrane elasticity.The free energy of the membrane, the average number of the gauche conformations in the hydrocarbon interior and at the membrane surface, gauche distribution along the chain, the membrane thickness, area and volume are calculated at different temperatures and voltages. The calculation also gives the temperature dependence of Young's modulus and that of the linear thermal expansion coefficient.  相似文献   
9.
‘Regional activation’ has been identified within the supraspinatus and infraspinatus. Previous EMG studies have provided insight on the different functions of the sub-regions within the supraspinatus and infraspinatus, however, to date timing of peak EMG activation has not been investigated. To assess how theses sub-regions function during commonly prescribed rehabilitation exercises, electrodes were inserted into the supraspinatus - anterior and posterior- and infraspinatus - superior and middle - of 22 healthy participants. For each sub-region, normalized EMG data - amplitude and timing - was collected from nine rehabilitation exercises - three with an elastic band and six an exercise ball. Supraspinatus posterior and infraspinatus superior had similar activation levels between elastic band exercises, but the timing of peak activation was exercise specific. In all elastic band exercises, supraspinatus posterior activated prior to supraspinatus anterior. All ball exercises elicited low-amplitude muscle activation; dynamic ball exercises had higher peak muscle activation than their static counterparts.  相似文献   
10.
Although the influence of the series elastic element of the muscle–tendon unit on jump performance has been investigated, the corresponding effect of the parallel elastic element remains unclear. This study examined the relationship between the resting calf muscle stiffness and drop jump performance. Twenty-four healthy men participated in this study. The shear moduli of the medial gastrocnemius and the soleus were measured at rest as an index of muscle stiffness using ultrasound shear wave elastography. The participants performed drop jumps from a 15 cm high box. The Spearman rank correlation coefficient was used to examine the relationships between shear moduli of the muscles and drop jump performance. The medial gastrocnemius shear modulus showed a significant correlation with the drop jump index (jump height/contact time) (r = 0.414, P = 0.044) and jump height (r = 0.411, P = 0.046), but not with contact time (P > 0.05). The soleus shear modulus did not correlate with these jump parameters (P > 0.05). These results suggest that the resting medial gastrocnemius stiffness can be considered as one of the factors that influence drop jump performance. Therefore, increase in resting muscle stiffness should enhance explosive athletic performance in training regimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号