首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.

Background

Heparan sulfate proteoglycans are ubiquitously expressed on cell surfaces and in extracellular matrices, and are engaged in heparin-binding growth factor-related signal transduction. Thus, changes in the amounts, structures, and chain lengths of heparan sulfate have profound effects on aspects of cell growth controlled by heparin-binding growth factors such as FGF2. Exostosin glycosyltransferases (EXT1, EXT2, EXTL1, EXTL2, and EXTL3) control heparan sulfate biosynthesis, and the expression levels of their genes regulate the amounts, chain lengths, and sulfation patterns of heparan sulfate. Unlike EXT1, EXT2, and EXTL3, EXTL2 functions chain termination of heparan sulfate. Here, we examined the importance of EXTL2 in FGF2-dependent signaling.

Methods

We investigated heparan sulfate biosynthesis and FGF2 signaling using four cell lines, EXT1-deficient cells, EXT2-, EXTL2-, or EXTL3-knockdown cells, by HPLC, qRT-PCR, flow cytometry, and western blotting.

Results

Reduced expression of either EXT1, EXT2, or EXTL3 decreased heparan sulfate biosynthesis, and consequently suppressed the FGF2-dependent proliferation of mouse L fibroblasts. In contrast, although knockdown of EXTL2 increased the amounts of heparan sulfate, FGF2-dependent proliferation was significantly inhibited because the increased heparan sulfate enhanced the incorporation of FGF2 into the cells.

Conclusions

EXTL2 controls FGF2 signaling through regulation of heparan sulfate biosynthesis in a manner distinct from that of other exostosins.

General significance

This study provides new insights into the regulatory mechanisms of FGF2 signaling by EXTL2.  相似文献   
2.
In adenoviral virions, the genome is organized into a chromatin‐like structure by viral basic core proteins. Consequently viral DNAs must be replicated, chromatinized and packed into progeny virions in infected cells. Although viral DNA replication centers can be visualized by virtue of viral and cellular factors, the spatiotemporal regulation of viral genomes during subsequent steps remains to be elucidated. In this study, we used imaging analyses to examine the fate of adenoviral genomes and to track newly replicated viral DNA as well as replication‐related factors. We show de novo formation of a subnuclear domain, which we termed Virus‐induced Post‐Replication (ViPR) body, that emerges concomitantly with or immediately after disintegration of initial replication centers. Using a nucleoside analogue, we show that viral genomes continue being synthesized in morphologically distinct replication compartments at the periphery of ViPR bodies and are then transported inward. In addition, we identified a nucleolar protein Mybbp1a as a molecular marker for ViPR bodies, which specifically associated with viral core protein VII. In conclusion, our work demonstrates the formation of previously uncharacterized viral DNA replication compartments specific for late phases of infection that produce progeny viral genomes accumulating in ViPR bodies.   相似文献   
3.
4.
Research into muscle atrophy and hypertrophy is hampered by limitations of the available experimental models. Interpretation of in vivo experiments is confounded by the complexity of the environment while in vitro models are subject to the marked disparities between cultured myotubes and the mature myofibres of living tissues. Here we develop a method (PhAct) based on ex vivo maintenance of the isolated myofibre as a model of disuse atrophy, using standard microscopy equipment and widely available analysis software, to measure f-actin content per myofibre and per nucleus over two weeks of ex vivo maintenance. We characterize the 35% per week atrophy of the isolated myofibre in terms of early changes in gene expression and investigate the effects on loss of muscle mass of modulatory agents, including Myostatin and Follistatin. By tracing the incorporation of a nucleotide analogue we show that the observed atrophy is not associated with loss or replacement of myonuclei. Such a completely controlled investigation can be conducted with the myofibres of a single muscle. With this novel method we can distinguish those features and mechanisms of atrophy and hypertrophy that are intrinsic to the muscle fibre from those that include activities of other tissues and systemic agents.  相似文献   
5.
We recently reported that the p12 subunit of human DNA polymerase δ (Pol δ4) is degraded by CRL4Cdt2 which regulates the licensing factor Cdt1 and p21WAF1 during the G1 to S transition. Presently, we performed multiparameter laser scanning cytometric analyses of changes in levels of p12, Cdt1 and p21WAF1, detected immunocytochemically in individual cells, vis-à-vis the initiation and completion of DNA replication. The latter was assessed by pulse-labeling A549 cells with the DNA precursor ethynyl-2′-deoxyribose (EdU). The loss of p12 preceded the initiation of DNA replication and essentially all cells incorporating EdU were p12 negative. Completion of DNA replication and transition to G2 phase coincided with the re-appearance and rapid rise of p12 levels. Similar to p12 a decline of p21WAF1 and Cdt1 was seen at the end of G1 phase and all DNA replicating cells were p21WAF1 and Cdt1 negative. The loss of p21WAF1 preceded that of Cdt1 and p12 and the disappearance of the latter coincided with the onset of DNA replication. Loss of p12 leads to conversion of Pol δ4 to its trimeric form, Pol δ3, so that the results provide strong support to the notion that Pol δ3 is engaged in DNA replication during unperturbed progression through the S phase of cell cycle. Also assessed was a correlation between EdU incorporation, likely reflecting the rate of DNA replication in individual cells, and the level of expression of positive biomarkers of replication cyclin A, PCNA and Ki-67 in these cells. Of interest was the observation of stronger correlation between EdU incorporation and expression of PCNA (r = 0.73) than expression of cyclin A (r = 0.47) or Ki-67 (r = 0.47).  相似文献   
6.
The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access.  相似文献   
7.
Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells1-3. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication4. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2''-deoxyuridine (EdU)5-7 with a tyramide signal amplification (TSA)8 protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU5-7 does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers9-10. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.  相似文献   
8.
9.
摘要 目的:比较EdU标记对三种癌细胞和小鼠对细胞增殖的影响,为EdU作为标记开展相关细胞增殖实验和临床研究提供依据。方法:本研究使用不同剂量EdU对人非小细胞肺癌A549细胞、人宫颈癌Hela细胞、人肝癌Huh7进行标记2 h,然后使用荧光显微镜观测EdU在细胞中的标记效率,并使用多波长荧光酶标仪检测这三种癌细胞系标记后的荧光强度;使用流式细胞仪检测小鼠经不同剂量的EdU干预12 h后,体内肺、肝、肾组织标记的荧光强度。结果:与对照组相比,经EdU处理后,A549和Hela细胞系的荧光强度,三个剂量组均有显著性差异(P<0.01),Huh7细胞系的荧光强度,50 μmol/L有显著性差异(P<0.05);EdU在小鼠体内组织肺、肝、肾组织中均有分布,且在肝组织中分布比肺组织和肾组织高。结论:EdU的体外癌细胞与小鼠体内组织细胞的标记效率各不相同,建立的EdU体外标记癌细胞和小鼠体内组织的方法简单,易操作。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号