首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
  77篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
排序方式: 共有77条查询结果,搜索用时 62 毫秒
1.
2.
Polyphenols histochemically detected in fresh uninfected roots of Quercus, Castanopsis and Lithocarpus growing in Hong Kong and shown to be condensed tannins were found mainly as intracellular material in the cells of the root cap, the epidermal layer and the endodermis. The cell walls of the outer cortex and the endodermis also contained suberin. Following invasion by compatible ectomycorrhizal symbionts, condensed tannins disappeared from cells of the root cap and the epidermal layer but hyphae were prevented from colonizing the cortex presumably due to suberin barriers. In vitro experiments indicated that a number of broad-host ectomycorrhizal fungi could utilise various polyphenolic compounds, including tannins found in the root exudates of the host trees, with different degrees of efficiency.  相似文献   
3.
Ectomycorrhizas were synthesized in pots and growth pouches betweenQuercus serrata, Q. acutissima, and two ectomycorrhizal fungi,Pisolithus tinctorius andHebeloma cylindrosporum. Root morphology and the structure of the mantle and Hartig net were compared using light, fluorescence, scanning and transmission electron microscopy.P. tinctorius initially colonized root cap cells, and eventually produced a highly branched lateral root system with a complete mantle, whereasH. cylindrosporum promoted root elongation with few hyphae on the root apex surface indicating that interaction between roots differs with fungal species. Hartig net structure and hyphal inclusions varied between all the combinations tested. There were structural differences between mycorrhizas ofH. cylindrosporum/Q. acutissima grown in soil and growth pouches, which indicate that the growth pouch environment can induce artefacts in roots. Fruit bodies ofH. cylindrosporum developed in pots withQ. acutissima. AlthoughP. tinctorius has been used to inoculate oak seedlings in the nursery, results of this study indicate thatH. cylindrosporum may also be an effective ectomycorrhizal fungus forQ. serrata andQ. acutissima.  相似文献   
4.
The effect of inoculating seedlings of Eucalyptus grandis, Allocasuarina littoralis and Casuarina equisetifolia with two isolates of Pisolithus and two isolates of Scleroderma from under eucalypts was examined in a glasshouse trial. Ectomycorrhizas formed extensively on Eucalyptus (23–46% fine roots ectomycorrhizal) and Allocasuarina (18–51% fine roots ectomycorrhizal). On Casuarina, the fungi were either unable to colonize the rhizosphere (one isolate of Pisolithus), or sheathed roots, resembling ectomycorrhizas, formed on 1–2% of the fine roots. Colonization of roots by one isolate of Scleroderma resulted in the death of Casuarina seedlings. Inoculation with fungi increased shoot dry weight by up to a factor of 32 (Eucalyptus), 4 (Allocasuarina) and 3 (Casuarina). Ectomycorrhizas formed in associations with Eucalyptus and Allocasuarina had fully differentiated mantles and Hartig nets in which the host and fungal cells were linked by an extensive fibrillar matrix. Sheathed roots in Casuarina lacked a Hartig net, and the epidermis showed a hypersensitive reaction resulting in wall thickening and cell death. The sheaths are described as mantles since the density and arrangement of the hyphae in the sheaths was similar to that in mantles of the eucalypt ectomycorrhizas. The intercellular carbohydrate matrix was not produced in the Casuarina mantle in association with Pisolithus, hence the mantle was not cemented to the root. These structures differ from poorly compatible associations described previously for Pisolithus and Eucalyptus. The anatomical data indicate that ectomycorrhizal assessment based on surface morphological features may be misleading in ecological studies because compatible and incompatible associations may not be distinguishable.  相似文献   
5.
The Alaskan tussock tundra is a strongly nutrient-limited ecosystem, where almost all vascular plant species are mycorrhizal. We established a long-term removal experiment to document effects of arctic plant species on ecto- and ericoid mycorrhizal fungi and to investigate whether species interactions and/or nutrient availability affect mycorrhizal colonization. The treatments applied were removal of Betula nana (Betulaceae, dominant deciduous shrub species), removal of Ledum palustre (Ericaceae, dominant evergreen shrub species), control (no removal), and each of these three treatments with the addition of fertilizer. After 3 years of Ledum removal and fertilization, we found that overall ectomycorrhizal colonization in Betula was significantly reduced. Changes in ectomycorrhizal morphotype composition in removal and fertilized treatments were also observed. These results suggest that the effect of Ledum on Betula 's mycorrhizal roots is due to sequestration of nutrients by Ledum, leading to reduced nutrient availability in the soil. In contrast, ericoid mycorrhizal colonization was not affected by fertilization, but the removal of Betula and to a lower degree of Ledum resulted in a reduction of ericoid mycorrhizal colonization suggesting a direct effect of these species on ericoid mycorrhizal colonization. Nutrient availability was only higher in fertilized treatments, but caution should be taken with the interpretation of these data as soil microbes may effectively compete with the ion exchange resins for the nutrients released by plant removal in these nutrient-limited soils.  相似文献   
6.
The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.  相似文献   
7.
Ectomycorrhizas of Boletus aereus, Boletus edulis, and Boletus reticulatus were synthesized with Cistus sp. under laboratory conditions using synthesis tubes filled with a mixture of sterilized peat-vermiculite and nutrient solution. The fungal strains isolated from sporocarps were identified by molecular techniques. The inoculated seedlings were grown for 4–5 months. The ectomycorrhizas formed were described based on standard morphological and anatomical characters. The three ectomycorrhizas described were very similar, with white monopodial-pinnate morphology, a three-layered plectenchymatous mantle on plan view and boletoid rhizomorphs.  相似文献   
8.
9.
10.
Ectomycorrhizas are formed between certain soil fungi and fine roots of woody plants. An important feature of this symbiosis is the supply of photoassimilates to the fungus. Hexoses, formed from sucrose in the common apoplast at the root/fungus interface, can be taken up by both plant and fungal monosaccharide transporters. Recently we characterised a monosaccharide transporter from the ectomycorrhizal fungus Amanita muscaria. This transporter was up-regulated in mycorrhizas, thus increasing the hexose uptake capacity of the fungal partner in symbiosis. In order to characterise host (Picea abies) root monosaccharide transporters, degenerate oligonucleotide primers, designed to match conserved regions from known plant hexose transporters, were used to isolate a cDNA fragment of a transporter by PCR. This fragment was used to identify a presumably full length clone (PaMST1) in a P. abies/A. muscaria mycorrhizal cDNA library. The entire cDNA code for an open reading frame of 513 amino acids, revealing best homology to H+/monosaccharide transporters from Ara- bidopsis, Saccharum and Ricinus. PaMST1 was highly expressed in the hypocotyl and in roots of P. abies seedlings, but not in needles. Mycorrhiza formation led to a slight reduction of PaMST1 expression. The results are discussed with special reference to carbon allocation in ectomycorrhizas. Received: 9 October 1999 / Accepted: 22 December 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号