首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2011年   1篇
  2008年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from –7.9 to –8.9?kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50?ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Ebolavirus can cause a highly fatal and panic-generating human disease which may jump from bats to other mammals and human. High viral loads in body fluids allow efficient transmission by contact. Lack of effective antivirals, vaccines and public health infrastructures in parts of Africa make it difficult to health workers to contain the outbreak.  相似文献   
3.
Ebola virus (EboV) and Marburg virus (MarV) (filoviruses) are the causative agents of severe hemorrhagic fever. Infection begins with uptake of particles into cellular endosomes, where the viral envelope glycoprotein (GP) catalyzes fusion between the viral and host cell membranes. This fusion event is thought to involve conformational rearrangements of the transmembrane subunit (GP2) of the envelope spike that ultimately result in formation of a six-helix bundle by the N- and C-terminal heptad repeat (NHR and CHR, respectively) regions of GP2. Infection by other viruses employing similar viral entry mechanisms (such as HIV-1 and severe acute respiratory syndrome coronavirus) can be inhibited with synthetic peptides corresponding to the native CHR sequence ("C-peptides"). However, previously reported EboV C-peptides have shown weak or insignificant antiviral activity. To determine whether the activity of a C-peptide could be improved by increasing its intracellular concentration, we prepared an EboV C-peptide conjugated to the arginine-rich sequence from HIV-1 Tat, which is known to accumulate in endosomes. We found that this peptide specifically inhibited viral entry mediated by filovirus GP proteins and infection by authentic filoviruses. We determined that antiviral activity was dependent on both the Tat sequence and the native EboV CHR sequence. Mechanistic studies suggested that the peptide acts by blocking a membrane fusion intermediate.  相似文献   
4.
Ebolavirus and Marburgvirus (belonging to the Filoviridae family) emerged four decades ago and cause epidemics of haemorrhagic fever with high case-fatality rates. The genome of filoviruses encodes seven proteins. No significant homology is observed between filovirus proteins and any known macromolecule. Moreover, Marburgvirus and Ebolavirus show significant differences in protein homology. The natural maintenance cycle of filoviruses is unknown, the natural reservoir, the mode of transmission, the epidemic disease generation, and temporal dynamics are unclear. Lastly, Ebolavirus and Marburgvirus are considered as potential biological weapons. Vaccine appears the unique therapeutic frontier. Here, molecular and clinical aspects of filoviral haemorrhagic fevers are summarized.  相似文献   
5.
Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%−90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by filovirus, remain unknown. We firstly demonstrated a direct interaction between hTIM-1 and EBOV GP in vitro and determined the crystal structures of the Ig V domains of hTIM-1 and hTIM-4. The binding region in hTIM-1 to EBOV GP was mapped by chimeras and mutation assays, which were designed based on structural analysis. Pseudovirion infection assays performed using hTIM-1 and its homologs as well as point mutants verified the location of the GP binding site and the importance of EBOV GP-hTIM-1 interaction in EBOV cellular entry.  相似文献   
6.
Ebolavirus and Marburgvirus (belonging to the Filoviridae family) emerged four decades ago and cause epidemics of haemorrhagic fever with high case-fatality rates. The genome of filoviruses encodes seven proteins. No significant homology is observed between filovirus proteins and any known macromolecule. Moreover, Marburgvirus and Ebolavirus show significant differences in protein homology. The natural maintenance cycle of filoviruses is unknown, the natural reservoir, the mode of transmission, the epidemic disease generation, and temporal dynamics are unclear. Lastly, Ebolavirus and Marburgvirus are considered as potential biological weapons. Vaccine appears the unique therapeutic frontier. Here, molecular and clinical aspects of filoviral haemorrhagic fevers are summarized.  相似文献   
7.
微卫星或简单重复序列(simple sequence repeat, SSR)在真核和原核生物以及病毒基因组中普遍存在,并被广泛用于遗传与进化研究。本研究从NCBI中下载埃博拉病毒属的四个不同种的埃博拉病毒全基因组序列,筛选36条作为实验材料,利用IMEx在线提取软件提取SSRs,用Python编程统计数据,从而分析SSRs在埃博拉病毒全基因组序列中的分布情况。分析得出,埃博拉病毒基因组序列中二型SSRs含量最为丰富,其次是一型SSRs,三型SSRs有少量,四型SSRs则更少,没有发现五型和六型SSRs。在更深入的分析中得出在埃博拉病毒属四个种中,含A/T碱基的SSRs含量远远大于含C/G碱基的SSRs。分析得出一型SSRs中(A)n/(T)n远多于(G)n/(C)n,二型SSRs中不存在(GC/CG)n,三型中也不存在(GGC/CGG/GCG/CCG/CGC/GCC) n。上述发现可能跟埃博拉病毒的致病机理有密切联系。通过对埃博拉病毒基因组序列中SSRs的分析,为研究埃博拉病毒的变异情况及致病机制提供更多参考。  相似文献   
8.
Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号