首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2005年   4篇
  2003年   1篇
  1984年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
High negative electric potential inside mitochondria provides a driving force for mitochondria-targeted delivery of cargo molecules linked to hydrophobic penetrating cations. This principle is utilized in construction of mitochondria-targeted antioxidants (MTA) carrying quinone moieties which produce a number of health benefitting effects by protecting cells and organisms from oxidative stress. Here, a series of penetrating cations including MTA were shown to induce the release of the liposome-entrapped carboxyfluorescein anion (CF), but not of glucose or ATP. The ability to induce the leakage of CF from liposomes strongly depended on the number of carbon atoms in alkyl chain (n) of alkyltriphenylphosphonium and alkylrhodamine derivatives. In particular, the leakage of CF was maximal at n about 10-12 and substantially decreased at n = 16. Organic anions (palmitate, oleate, laurylsulfate) competed with CF for the penetrating cation-induced efflux. The reduced activity of alkylrhodamines with n = 16 or n = 18 as compared to that with n = 12 was ascribed to a lower rate of partitioning of the former into liposomal membranes, because electrical current relaxation studies on planar bilayer lipid membranes showed rather close translocation rate constants for alkylrhodamines with n = 18 and n = 12. Changes in the alkylrhodamine absorption spectra upon anion addition confirmed direct interaction between alkylrhodamines and the anion. Thus, mitochondria-targeted penetrating cations can serve as carriers of hydrophobic anions across bilayer lipid membranes.  相似文献   
2.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   
3.
Several studies have shown that the physical state of the phospholipid membrane has an important role in protein-membrane interactions, involving both electrostatic and hydrophobic forces. We have investigated the influence of the interaction of the calcium-depleted, (apo)-conformation of bovine α-lactalbumin (BLA) on the integrity of anionic glycerophospholipid vesicles by leakage experiments using fluorescence spectroscopy. The stability of the membranes was also studied by measuring surface tension/molecular area relationships with phospholipid monolayers. We show that the degree of unsaturation of the acyl chains and the proportion of charged phospholipid species in the membranes made of neutral and acidic glycerophospholipids are determinants for the association of BLA with liposomes and for the impermeability of the bilayer. Particularly, tighter packing counteracted interaction with BLA, while unsaturation—leading to looser packing—promoted interaction and leakage of contents. Equimolar mixtures of neutral and acidic glycerophospholipids were more permeable upon protein binding than pure acidic lipids. The effect of lipid structure on BLA-membrane interaction and bilayer integrity may throw new light on the membrane disrupting mechanism of a conformer of human α-lactalbumin (HAMLET) that induces death of tumour cells but not of normal cells.  相似文献   
4.
We report on the synthesis by coupling of a triterpenoid oleanolic acid with 4'-diethylamino-3-hydroxyflavone (FE) to produce an environment-sensitive biomembrane probe with two-band ratiometric response in fluorescence emission. The synthesized compound (probe FOT) was tested in a series of model solvents and demonstrated the response to solvent polarity and intermolecular hydrogen bonding very similar to that of parent probe FE. Meantime when incorporated into lipid bilayer membranes, it showed new features differing in response between lipids of different surface charges as well as between glycerophospholipids and sphingomyelin. We observed that in the conditions of coexistence of rafts and non-raft structures the probe is excluded from the rafts.  相似文献   
5.
HAMLET/BAMLET (Human/Bovine α-Lactalbumin Made Lethal to Tumors) is a tumoricidal substance composed of partially unfolded human/bovine α-lactalbumin (HLA/BLA) and several oleic acid (OA) molecules. The HAMLET mechanism of interaction involves an insufficiently understood effect on the membrane or its embedded components. We examined the effect of BLAOA (bovine α-lactalbumin complexed with oleic acid, a HAMLET-like substance) and its individual components on cells and artificial lipid membranes using viability staining and metabolic dyes, fluorescence spectroscopy, leakage integrity assays and microscopy. Our results show a dose-dependency of OA used to prepare BLAOA on its ability to induce tumor cell death, and a correlation between leakage and cell death. BLAOA incorporates into the membrane, tightens the lipid packing and lowers their solvent accessibility. Fluorescence imaging reveals that giant unilamellar vesicles (GUVs) develop blebs and eventually collapse upon exposure to BLAOA, indicating that the lipid packing reorganization can translate into observable morphological effects. These effects are observed to be local in GUVs, and a tightly packed and solvent-shielded lipid environment is associated with leakage and GUV disruption. Furthermore, the effects of BLAOA on membrane are pH dependent, with an optimum of activity on artificial membranes near neutral pHs. While BLA alone is effective at membrane disruption at acidic pHs, OA is ineffective in a pH range of 4.5 to 9.1. Taken together, this supports a model where the lipid, fatty acid and protein components enhance each other's ability to affect the overall integrity of the membrane.  相似文献   
6.
With application of EPR and 1H NMR techniques genistein interaction with liposomes formed with egg yolk lecithin and with erythrocyte membranes was assessed. The present study addressed the problem of genistein localization and its effects on lipid membrane fluidity and protein conformation. The range of microscopic techniques was employed to study genistein effects on HeLa cells and human erythrocytes. Moreover, DPPH bioassay, superoxide anion radical test and enzymatic measurements were performed in HeLa cells subjected to genistein. The gathered results from both EPR and NMR techniques indicated strong ordering effect of genistein on the motional freedom of lipids in the head group region and the adjacent hydrophobic zone in liposomal as well as in red blood cell membranes. EPR study of human ghost showed also the changes in the erythrocyte membrane protein conformation. The membrane effects of genistein were correlated with the changes in internal membranes arrangement of HeLa cells as it was noticed using transmission electron microscopic and fluorescent techniques. Scanning electron and light microscopy methods showed that one of the aftermaths of genistein incorporation into membranes was creation of echinocytic form of the red blood cells with reduced diameter. Genistein improved redox status of HeLa cells treated with H2O2 by lowering radicals' level.  相似文献   
7.
Polar carotenoid pigment - canthaxanthin - has been found to interfere with the organization of biological membranes, in particular of the retina membranes of an eye of primates. The organization of lipid membranes formed with dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine containing canthaxanthin was studied by means of several techniques including: electronic absorption spectroscopy, linear dichroism, X-ray diffractometry, 1H-NMR spectroscopy and FTIR spectroscopy. It appears that canthaxanthin present in the lipid membranes at relatively low concentration (below 1 mol% with respect to lipid) modifies significantly physical properties of the membranes. In particular, canthaxanthin (i) exerts restrictions to the segmental molecular motion of lipid molecules both in the headgroup region and in the hydrophobic core of the bilayer, (ii) promotes extended conformation of alkyl lipid chains, (iii) modifies the surface of the lipid membranes (in particular in the gel state, Lβ´) and promotes the aggregation of lipid vesicles. It is concluded that canthaxanthin incorporated into lipid membranes is distributed among two pools: one spanning the lipid bilayer roughly perpendicularly to the surface of the membrane and one parallel to the membrane, localized in the headgroup region. The population of the horizontal fraction increases with the increase in the concentration of the pigment in the lipid phase. Such a conclusion is supported by the linear dichroism analysis of the oriented lipid multibilayers containing canthaxanthin: The mean angle between the dipole transition moment and the axis normal to the plane of the membrane was determined as 20 ± 3° at 0.5 mol% and 47 ± 3° at 2 mol% canthaxanthin. The analysis of the absorption spectra of canthaxanthin in the lipid phase and 1H-NMR spectra of lipids point to the exceptionally low aggregation threshold of the pigment in the membrane environment (∼1 mol%). All results demonstrate a very strong modifying effect of canthaxanthin with respect to the dynamic and structural properties of lipid membranes.  相似文献   
8.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   
9.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   
10.
Egg yolk phosphatidyl choline liposomes containing variable amounts of phosphatidyl ethanolamine, phosphatidyl inositol or phosphatidyl serine demonstrated important variations in the fluorescence of 3.3' dipropylthiodicarbocyanine. When the membrane contained no cholesterol, fluorescence was not correlated with membrane fluidity as measured by diphenyl hexatriene polarization. Increasing cholesterol concentration in valinomycin containing liposome membranes decreased the potassium induced apparent membrane potential and prevented sorption of dye to the membrane. Discontinuity in the apparent potential occurred at 30 mol% cholesterol but could not be correlated with changes in microviscosity. These results indicate that great care should be taken when correlating rapid variations of fluorescence to changes in membrane potential. We propose that changes in phospholipid metabolism could well explain fluorescent changes when monitoring the fluorescence of cyanine dye molecules sorbed to biological membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号