首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
  40篇
  2023年   1篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   7篇
  2010年   1篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有40条查询结果,搜索用时 18 毫秒
1.
Abstract

Orthologous proteins do not necessarily share the same function in all species and those sharing the same function might employ a modified catalytic mechanism. Thus, comparative analysis of homologous or orthologous proteins from different organisms can provide detailed information on the function and the mechanism of an entire protein family. The sensor kinase ETR1 from Arabidopsis thaliana has been well characterized by genetic, physiological and biochemical studies. However, as further model plants are coming into focus for plant hormone research, a general protocol for isolation and purification of orthologous ETR1 proteins seems instrumental for a detailed molecular analysis of this protein family. In this study, we describe the native purification of recombinant ETR1 from Arabidopsis thaliana by mild solubilization with the zwitter-ionic detergent Fos-Choline-14 and single-step purification by immobilized metal ion affinity chromatography. The same protocol was successfully applied for the purification of the orthologous proteins from the moss Physcomitrella patens subsp. patens and the tomato Lycopersicon esculentum. The successful transfer of the purification protocol to proteins of the same family which share sequence identity of 63–80% only suggests that this protocol presents a general purification strategy which is likely to apply also to the purification of other members of the sensor histidine kinase family.  相似文献   
2.
3.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   
4.
Ethylene signal transduction   总被引:22,自引:0,他引:22  
  相似文献   
5.
Although only a small proportion of plant phosphorus (P) is used for photosynthesis, the relationships between P and photosynthesis can be strong. It was hypothesized, in this study, that variation in the allocation of orthophosphate (Pi) between active (cytoplasmic) and nonactive (vacuolar) pools would underpin differences in rates of photosynthesis in 4-month-old Eucalyptus globulus seedlings grown with a varying P supply. Photosynthetic biochemistry was assessed by the response of net photosynthesis to increasing intercellular [CO2]. Cytoplasmic Pi was sequestered as mannose 6-phosphate. Total P and the proportion of P as Pi were positively related to P supply. The ratios of active : stored Pi (10-24%) varied little over the range of treatments. Active Pi was positively related to P supply, as was photosynthesis (7 micromol CO2 m(-2) s(-1) with 0 mM P vs. 16 micromol CO2 m(-2) s(-1) with 0.32 mM P). Positive relationships between P supply and photosynthesis were explained best by leaf P content, not by active pools of Pi. The distribution of Pi between the vacuole and the cytoplasm had little impact on the photosynthetic phosphorus-use efficiency (PPUE), and reductions in cytoplasmic Pi had little effect on photosynthesis. Hence, PPUE is an unsuitable guide for assessing plant responses to increasingly unavailable P in the environment.  相似文献   
6.
Ethylene is an important regulator of plant growth, development and responses to environmental stresses. Arabidopsis perceives ethylene through five homologous receptors that negatively regulate ethylene responses. RTE1, a novel gene conserved in plants, animals and some protists, was recently identified as a positive regulator of the ETR1 ethylene receptor. Here, we genetically analyze the dependence of ETR1 on RTE1 in order to obtain further insight into RTE1 function. The function of RTE1 was found to be independent and distinct from that of RAN1, which encodes a copper transporter required for ethylene receptor function. We tested the ability of an rte1 loss-of-function mutation to suppress 11 etr1 ethylene-binding domain mis-sense mutations, all of which result in dominant ethylene insensitivity due to constitutive signaling. This suppression test uncovered two classes of etr1 mutations -RTE1-dependent and RTE1-independent. The nature of these mutations suggests that the ethylene-binding domain is a possible target of RTE1 action. Based on these findings, we propose that RTE1 promotes ETR1 signaling through a conformational effect on the ethylene-binding domain.  相似文献   
7.
We observed a chilling-induced ethylene biosynthesis in Braeburn apples.The stimulatory effect depended on the length of the cooling period. The longerthe period, the stronger the stimulation. Low temperature stimulated activityand gene expression of ACS, but only stimulated gene expression of ACO. Thestimulatory effect of low temperature on gene expression was stronger andearlier in ACS than in ACO. 1-MCP (1-methylcyclopropene), an inhibitor ofethylene action, inhibited ethylene biosynthesis in fruit stored at 20°C and 0 °C. This inhibitory effect can beslightly recovered in fruit stored at 0 °C, but not at 20°C. Expression of genes for ACS and ACO was weaker in1-MCP-treated fruit stored at 20 °C, than those at 0°C. Thus, it is possible that expression of genes for ACS andACO in fruit at low temperature was mainly, but not completely, regulated bytheethylene receptor.  相似文献   
8.
In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO2 conditions or other metabolic strategies which can increase the carbon flux from CO2 to metabolic pools. However, even under optimal CO2 conditions plants will provide much more NADPH + H+ and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP+ would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called “alternative electron cycling” which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non-photochemical quenching or photorespiration appear in a quite new perspective, especially when discussing strategies to improve the solar energy conversion into plant biomass.  相似文献   
9.
The wetting behaviour of the spray and the biological efficacy of Cu2+ active ingredients in agrochemical formulations may be enhanced by tank-mix additives. We investigated how three BREAK-THRU® additives (BT301: biodegradable, BT133 and BT420: bio-based and biodegradable) tank-mixed with commercial copper preparations influenced the spray distribution, leaf uptake and biological efficacy of copper additive mixtures against apple scab and apple powdery mildew under controlled conditions. We quantified the synergetic effects of these additives in foliar applications. In addition, we determined the phytotoxic potential and evaluated their impacts on photosynthetic activity, non-photochemical quenching and ROS activity. The additives BT301 and BT420 strongly reduced surface tension and contact angle of copper treatments. The fluorescence observations revealed that BT301 achieved better spreading of copper formulation with more complete coverage of the leaf surface than BT420 and BT133, whereas ‘coffee-ring’ spreading was observed with BT133. The additive BT301 showed an increase in relative fluorescence area, indicating higher ROS production as a signal of intra-cellular tissue activity. The photochemical efficiency of photosystem II (Fv/Fm) was not negatively influenced by copper or additive treatment. Thus, we observed no phytotoxic effects of copper-additive mixtures on apple leaves at treatment doses of 4 g Cu2+ L−1. All copper treatments reduced apple scab infections significantly, by 53%–76%. Interestingly, addition of BT301 to copper preparations showed the strongest biological efficacy (83% reduction) against Venturia inaequalis, whereas addition of BT420 showed the strongest effect against Podosphaera leucotricha (89% infection reduction). The synergetic effects of additives on the biological efficacy without phytotoxic effects on plants may have potential for reducing copper loads in horticultural production systems.  相似文献   
10.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号