首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
吗啡对大鼠海马神经元突触传递的作用及机制探讨   总被引:1,自引:0,他引:1  
目的 :从离子通道角度研究吗啡对中枢神经系统兴奋性及抑制性突触传递的作用并探讨其机制。方法 : 原代培养新生Wistar大鼠的海马神经元。采用膜片钳技术研究吗啡对其兴奋性及抑制性突触后电流及谷氨酸诱发电流的影响。结果 :①吗啡可明显增强海马神经元兴奋性突触传递 ,加吗啡后自发兴奋性突触后电流 (sEPSC)的发放频率增加了 ( 2 0 7.8± 2 0 .9) %。此作用可被阿片受体阻断剂纳洛酮阻断 (P <0 .0 1) ;②吗啡对微小兴奋性突触后电流 (mEPSC)的发放频率及谷氨酸诱发电流的幅度没有明显影响 (P >0 .0 5 ) ;③吗啡可明显抑制神经元自发抑制性突触后电流 (sIPSC) ,纳洛酮可拮抗吗啡作用 (n =13 ,P <0 .0 1)。结论 :实验结果提示吗啡对海马神经元的兴奋作用不是由于吗啡直接作用于兴奋性氨基酸—谷氨酸突触传递过程 ,而是可能由于抑制了抑制性中间神经元 ,间接产生的兴奋作用。  相似文献   
3.
Networks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice. Cultures developed spontaneous synchronous activity already at 5-7 days in vitro (DIV), as revealed by imaging transient changes in Fluo-3 fluorescence. Concurrently, spontaneous glutamate-mediated and GABA(A)-mediated postsynaptic currents (sPSCs) occured at 5 DIV. For both types of neurons the frequency of glutamatergic and GABAergic sPSCs increased with DIV, whereas the charge transfer of glutamatergic sPSCs increased and the charge transfer of GABAergic sPSCs decreased with cultivation time. The ratio between GABAergic and the overall charge transfer was significantly reduced with DIV for L-INs and PNs, indicating an overall reduction in GABAergic synaptic drive with maturation of the network. In contrast, analysis of miniature PSCs (mPSCs) revealed no significant changes of charge transfer with DIV for both types of neurons, indicating that the reduction in GABAergic drive was not due to a decreased number of functional synapses. Our data suggest that the global reduction in GABAergic synaptic drive together with more synaptic input to PNs and L-INs during maturation may enhance rhythmogenesis of the network and increase the synchronization at the level of population bursts.  相似文献   
4.
《遗传学报》2020,47(3):123-130
Embryonic stem cells possess fascinating capacity of self-renewal and developmental potential,leading to significant progress in understanding the molecular basis of pluripotency,disease modeling,and reprogramming technology.Recently,2-cell-like embryonic stem cells (ESCs) and expanded potential stem cells or extended pluripotent stem cells (EPSCs) generated from early-cleavage embryos display some features of totipotent embryos.These cell lines provide valuable in vitro models to study underlying principles of totipotency,cell plasticity,and lineage segregation.In this review,we summarize the current progress in this filed and highlight the application potentials of these cells in the future.  相似文献   
5.
The excitatory synaptic function is subject to a huge amount of researches and fairly all the structural elements of the synapse are investigated to determine their specific contribution to the response. A model of an excitatory (hippocampal) synapse, based on time discretized Langevin equations (time-step = 40 fs), was introduced to describe the Brownian motion of Glutamate molecules (GLUTs) within the synaptic cleft and their binding to postsynaptic receptors. The binding has been computed by the introduction of a binding probability related to the hits of GLUTs on receptor binding sites. This model has been utilized in computer simulations aimed to describe the random dispersion of the synaptic response, evaluated from the dispersion of the peak amplitude of the excitatory post-synaptic current. The results of the simulation, presented here, have been used to find a reliable numerical quantity for the unknown value of the binding probability. Moreover, the same results have shown that the coefficient of variation decreases when the number of postsynaptic receptors increases, all the other parameters of the process being unchanged. Due to its possible relationships with the learning and memory, this last finding seems to furnish an important clue for understanding the basic mechanisms of the brain activity.  相似文献   
6.
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.  相似文献   
7.
By DNA cloning, we have identified the BSRP (brain-specific receptor-like proteins) family of three members in mammalian genomes. BSRPs were predominantly expressed in the soma and dendrites of neurons and localized in the endoplasmic reticulum (ER). Expression levels of BSRPs seemed to fluctuate greatly during postnatal cerebellar maturation. Triple-knockout mice lacking BSRP members exhibited motor discoordination, and Purkinje cells (PCs) were often innervated by multiple climbing fibers with different neuronal origins in the mutant cerebellum. Moreover, the phosphorylation levels of protein kinase Calpha (PKCalpha) were significantly downregulated in the mutant cerebellum. Because cerebellar maturation and plasticity require metabotropic glutamate receptor signaling and resulting PKC activation, BSRPs are likely involved in ER functions supporting PKCalpha activation in PCs.  相似文献   
8.
目的:观察戊四氮对大鼠海马CA1区动作电位(action potential,AP)和兴奋性突触后电流(excitatory postsynaptic current,EPSC)的影响和丙泊酚的拮抗作用。方法:断头法分离Wistar大鼠海马半脑,切片机切出400μm厚度的海马脑片,全细胞电流钳记录CA1区锥体神经元动作电位发放情况,全细胞电压钳记录电刺激Schaeffer侧支/联合纤维诱发的CA1区锥体神经元EPSC的变化。结果:戊四氮使动作电位发放频率增加,EPSC值降低;丙泊酚拮抗戊四氮的作用,使动作电位发放减少甚至消失,EPSC值上升至加入丙泊酚前的2倍左右。结论:丙泊酚拮抗戊四氮对动作电位和EPSC的作用,所以临床上可用于抗癫痫治疗。  相似文献   
9.
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.  相似文献   
10.
ATP is considered to impact on fast synaptic transmission in several regions of the CNS, including the CA1 and CA3 areas of the hippocampus. The existing paradigm suggests that ATP induces synaptic responses in CA3 pyramidal cells, and a fast ATP-mediated component is observed in cultured hippocampal slices mainly under conditions of a synchronous discharge from multiple presynaptic inputs. We confirmed the existence of a fast ATP-mediated component within electrically evoked EPSCs (eEPSCs) in CA3 neurons of acute slices of the rat hippocampus using a whole-cell patch-clamp recording mode. In approximately 50% of the examined cells, eEPSCs were not completely inhibited by co-applied glutamate receptor antagonists, NBQX (50 μM) and D-APV (25 μM). The residual current was sensitive to ionotropic P2X receptor antagonists, such as suramin (25 μM) and NF023 (2 μM). Known purinergic receptor modulators, ivermectin (10 μM) and PPADS (10 μM), practically did not affect EPSCs, whereas a nonhydrolyzable ATP analog, ATPγS (100 μM), slightly decreased the EPSC amplitude. Moreover, ATPγS (100 μM) at a holding potential of −70 mV generated a slow inward current in most recorded neurons, which was insensitive to glutamate receptor antagonists. This fact is indicative of the ionotropic P2X receptor activation. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 21–29, January–February, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号