首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
PurposeThis study aims at investigating the dosimetric characteristics of a Varian aS1000 EPID, focusing on its continuous acquisition mode under the challenging conditions that can be met in stereotactic radiotherapy verification.MethodsAn aS1000 EPID installed on a Varian TrueBeamSTx was irradiated with 6 and 10 MV unflattened and flattened photon beams. In order to avoid detector saturation, the source-to-detector distance (SDD) was set to 150 or 180 cm depending on the dose rate. EPID image sets were acquired in continuous mode (CM) and also in the commonly used integrated mode (IM) for comparison, to evaluate dose linearity (including dose rate dependence), repeatability, reproducibility, stability, ghosting effect and field size dependence.ResultsCM response linearity was found to be within 0.8% of IM and independent of dose rate. Response repeatability was slightly better for IM and FF beams, being in all cases within 0.9%. Reproducibility was within 0.6% for both modes and all beam qualities. Response stability between continuous frames varied within 1% for dynamic and static irradiations and for all the beam qualities, showing its independence from these parameters. Ghosting effect was not significant, being comparable to signal variations between continuous frames (±1%). Field size dependence in both modes agreed within 1%.ConclusionsThe dosimetric response of the aS1000 EPID in CM with FFF beams and high dose rates is comparable to that in IM and for flattened beams provided that the appropriate SDD is used. aS1000 EPID in continuous acquisition mode is therefore suitable for stereotactic applications.  相似文献   
2.
BackgroundThe aim of the study was to evaluate analysis criteria for the identification of the presence of rectal gas during volumetric modulated arc therapy (VMAT) for prostate cancer patients by using electronic portal imaging device (EPID)-based in vivo dosimetry (IVD).Materials and methodsAll measurements were performed by determining the cumulative EPID images in an integrated acquisition mode and analyzed using PerFRACTION commercial software. Systematic setup errors were simulated by moving the anthropomorphic phantom in each translational and rotational direction. The inhomogeneity regions were also simulated by the I’mRT phantom attached to the Quasar phantom. The presence of small and large air cavities (12 and 48 cm3) was controlled by moving the Quasar phantom in several timings during VMAT. Sixteen prostate cancer patients received EPID-based IVD during VMAT.ResultsIn the phantom study, no systematic setup error was detected in the range that can happen in clinical (< 5-mm and < 3 degree). The pass rate of 2% dose difference (DD2%) in small and large air cavities was 98.74% and 79.05%, respectively, in the appearance of the air cavity after irradiation three quarter times. In the clinical study, some fractions caused a sharp decline in the DD2% pass rate. The proportion for DD2% < 90% was 13.4% of all fractions. Rectal gas was confirmed in 11.0% of fractions by acquiring kilo-voltage X-ray images after the treatment.ConclusionsOur results suggest that analysis criteria of 2% dose difference in EPID-based IVD was a suitable method for identification of rectal gas during VMAT for prostate cancer patients.  相似文献   
3.
PurposeTo investigate the effectiveness of an EPID-based 3D transit dosimetry system in detecting deliberately introduced errors during VMAT delivery.MethodsAn Alderson phantom was irradiated using four VMAT treatment plans (one prostate, two head-and-neck and one lung case) in which delivery, thickness and setup errors were introduced. EPID measurements were performed to reconstruct 3D dose distributions of “error” plans, which were compared with “no-error” plans using the mean gamma (γmean), near-maximum gamma (γ1%) and the difference in isocenter dose (ΔDisoc) as metrics.ResultsOut of a total of 42 serious errors, the number of errors detected was 33 (79%), and 27 out of 30 (90%) if setup errors are not included. The system was able to pick up errors of 5 mm movement of a leaf bank, a wrong collimator rotation angle and a wrong photon beam energy. A change in phantom thickness of 1 cm was detected for all cases, while only for the head-and-neck plans a 2 cm horizontal and vertical shift of the phantom were alerted. A single leaf error of 5 mm could be detected for the lung plan only.ConclusionAlthough performed for a limited number of cases and error types, this study shows that EPID-based 3D transit dosimetry is able to detect a number of serious errors in dose delivery, leaf bank position and patient thickness during VMAT delivery. Errors in patient setup and single leaf position can only be detected in specific cases.  相似文献   
4.
5.
PurposeWe aimed to explore the temporal stability of radiomic features in the presence of tumor motion and the prognostic powers of temporally stable features.MethodsWe selected single fraction dynamic electronic portal imaging device (EPID) (n = 275 frames) and static digitally reconstructed radiographs (DRRs) of 11 lung cancer patients, who received stereotactic body radiation therapy (SBRT) under free breathing. Forty-seven statistical radiomic features, which consisted of 14 histogram-based features and 33 texture features derived from the graylevel co-occurrence and graylevel run-length matrices, were computed. The temporal stability was assessed by using a multiplication of the intra-class correlation coefficients (ICCs) between features derived from the EPID and DRR images at three quantization levels. The prognostic powers of the features were investigated using a different database of lung cancer patients (n = 221) based on a Kaplan-Meier survival analysis.ResultsFifteen radiomic features were found to be temporally stable for various quantization levels. Among these features, seven features have shown potentials for prognostic prediction in lung cancer patients.ConclusionsThis study suggests a novel approach to select temporally stable radiomic features, which could hold prognostic powers in lung cancer patients.  相似文献   
6.
A new tool with the potential to verify and track jaw position during delivery has been developed. The method should be suitable for independent quality assurance for jaw position during jaw tracking dynamic IMRT and VMAT treatments. The jaw detection and tracking algorithm developed consists of five main steps. Firstly, the image is enhanced by removing a normalised predicted EPID image (that does not include the collimator transmission) from each cine EPID image. Then, using a histogram clustering technique a global intensity threshold level was determined. This threshold level was used to classify each pixel of the image as either under the jaws or under the MLC. Additionally, the collimator angle was automatically detected and used to rotate the image to vertical direction. Finally, this rotation allows the jaw positions to be determined using vertical and horizontal projection profiles. Nine IMRT fields (with static jaws) and a single VMAT clinical field (with dynamic jaws) were tested by determining the root mean square difference between planned and detected jaw positions. The test results give a detection accuracy of ±1 mm RMS error for static jaw IMRT treatments and ±1.5 mm RMS error for the dynamic jaw VMAT treatment. This method is designed for quality assurance and verification in modern radiation therapy; to detect the position of static jaws or verify the position of tracking jaws in more complex treatments. This method uses only information extracted from EPID images and it is therefore independent from the linear accelerator.  相似文献   
7.
PurposeTo provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT.MethodsA 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment ‘fluence’ EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions.ResultsFluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition.Conclusions3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry.  相似文献   
8.

Aim

In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed.

Background

RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation.

Materials and methods

A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID.

Results

The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds.

Conclusion

The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks.  相似文献   
9.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   
10.
AimIn measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors.BackgroundThe use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom.Materials and methodsThe quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose.ResultsThe maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU.ConclusionIt is found from this study that the variation due to patient anatomy and interfraction organ motion is significant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号