首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有19条查询结果,搜索用时 515 毫秒
1.
Fully processed mRNAs are exported to the cytoplasm where they direct protein synthesis. A general feature of mRNA export is that it is an active, receptor-mediated process. The mRNA export receptors are thought to recognize and bind to the mRNA-export cargoes either directly or indirectly (via adaptor proteins) and facilitate their translocation across the central channel of the nuclear pore complex (NPC). On the cytoplasmic side of the NPC, the exported mRNA is released and the receptor returns to the nucleoplasm, without the cargo, to initiate additional rounds of export. Recent, studies in yeast and in higher eukaryotes have led to the elucidation of an evolutionarily conserved pathway for the export of bulk mRNA to the cytoplasm.  相似文献   
2.
Deng-Ke Niu  Jian-Li Cao 《FEBS letters》2010,584(16):3509-3512
In non-mammalian eukaryotes, an abnormally long 3′ untranslated region (UTR) is generally thought to be the definitive signal in the recognition of a premature termination codon (PTC) in nonsense-mediated mRNA decay (NMD). However, because the lengths of 3′ UTRs in normal mRNAs are widely distributed, “abnormally long” is hard to define. Distinct peaks of nucleosome deposition and DNA methylation have recently been found at coding region boundaries. We propose that nucleosomes and DNA methylation just upstream of a normal stop codon are ideal indicators for the position of a normal stop codon and may thus serve as signals in PTC recognition.  相似文献   
3.
Human transforming growth factor-β receptor type 2 (TGFβR2) mRNA harboring a premature translation termination codon (PTC) generated by frameshift mutation is targeted for nonsense-mediated translational repression (NMTR), rather than nonsense-mediated mRNA decay (NMD). Here we show that exon junction complex (EJC) downstream of a PTC plays an inhibitory role in translation of TGFβR2 mRNA. Translational repression by core EJC components occurs after formation of 80S ribosome complex, which is demonstrated using different types of internal ribosome entry sites (IRESes). Our findings implicate EJCs or core EJC components as negative regulators of translation.  相似文献   
4.
5.
6.
Gastric cancer (GC) is one of the most frequent malignancies worldwide. Long noncoding RNAs (lncRNAs) are found to be largely implicated in various cancers, including GC. However, the function of lncRNA VCAN antisense RNA 1 (VCAN-AS1) in GC remains unclear. Herein, we observed a low level of VCAN-AS1 in normal gastric tissues through NCBI and UCSC, and that VCAN-AS1 upregulation in GC tissues was related to poor prognosis by TCGA. Furthermore, VCAN-AS1 was found markedly enhanced in GC tissues and cell lines, while its upregulation was related with clinical outcomes of GC patients. Besides this, silencing VCAN-AS1 represses cell proliferation, migration, and invasion but enhances apoptosis. More important, we discovered that VCAN-AS1 expression was negatively correlated with wild-type p53 levels in GC tissues and that p53 was negatively modulated by VCAN-AS1 in GC cells. Furthermore, p53 suppression reversed the repression of VCAN-AS1 silence on the biological processes of AGS cells. Intriguingly, we identified that both VCAN-AS1 and TP53 can bind with eIF4A3, one of the core proteins in the exon junction complex. Also, we confirmed that VCAN-AS1 negatively regulates TP53 expression by competitively binding with eIF4A3. Our findings disclosed that VCAN-AS1 contributes to GC progression through interacting with eIF4A3 to downregulate TP53 expression, indicating that VCAN-AS1 is a novel therapeutic strategy for GC treatment.  相似文献   
7.
8.
Wu X  Brewer G 《Gene》2012,500(1):10-21
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.  相似文献   
9.
10.
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号