首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   21篇
  国内免费   1篇
  162篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   7篇
  2005年   12篇
  2004年   11篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   10篇
  1999年   2篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
1.
We have determined the major sites responsible for isoaspartate formation during in vitro aging of bovine brain calmodulin under mild conditions. Protein L-isoaspartyl methyltransferase (EC 2.1.1.77) was used to quantify isoaspartate by the transfer of methyl-3H from S-adenosyl-L-[methyl-3H]methionine to the isoaspartyl (alpha-carboxyl) side chain. More than 1.2 mol of methyl-acceptor sites per mol of calmodulin accumulated during a 2-week incubation without calcium at pH 7.4, 37 degrees C. Analysis of proteolytic peptides of aged calmodulin revealed that > 95% of the methylation capacity is restricted to residues in the four calcium-binding domains, which are predicted to be highly flexible in the absence of calcium. We estimate that domains III, IV, and II accumulated 0.72, 0.60, and 0.13 mol of isoaspartate per mol of calmodulin, respectively. The Asn-97-Gly-98 sequence (domain III) is the greatest contributor to isoaspartate formation. Other major sites of isoaspartate formation are Asp-131-Gly-132 and Asp-133-Gly-134 in domain IV, and Asn-60-Gly-61 in domain II. Significant isoaspartate formation was also localized to Asp-20, Asp-22, and/or Asp-24 in domain I, to Asp-56 and/or Asp-58 in domain II, and to Asp-93 and/or Asp-95 in domain III. All of these residues are calcium ligands in the highly conserved EF-hand calcium-binding motif. Thus, other EF-hand proteins may also be subject to isoaspartate formation at these ligands. The results support the idea that isoaspartate formation in structured proteins is strongly influenced by both the C-flanking residue and by local flexibility.  相似文献   
2.
3.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   
4.
Abstract

Proteins with the ability to specifically bind strontium would potentially be of great use in the field of nuclear waste management. Unfortunately, no such peptides or proteins are known—indeed, it is uncertain whether they exist under natural conditions due to low environmental concentrations of strontium. To investigate the possibility of devising such molecules, one of us (CV), in a previous experimental study [J. Biol. Inorg. Chem. 8, 33440 (2003)], proposed starting from an EF-hand motif of the protein calmodulin and mutating some residues to change the motif's specificity for calcium into one for strontium. In this paper, which represents a theoretical complement to the experimental work, we analyzed small-molecule crystallographic structures and performed quantum chemical calculations to identify possible mutations. We then constructed seven mutant sequences of the EF-hand motif and analyzed their dynamical and binding behaviors using molecular dynamics simulations and free-energy calculations (using the MM/PBSA method). As a result of these analyzes we were able to isolate some characteristics that could lead to mutant peptides with enhanced strontium affinity.  相似文献   
5.
Rice has evolved metabolic and morphological adaptations to low-oxygen stress to grow in submerged paddy fields. To characterize the molecular components that mediate the response to hypoxia in rice, we identified low-oxygen stress early response genes by microarray analysis. Among the highly responsive genes, five genes, OsHREF1 to OsHREF5, shared strong homology. They encoded small proteins harboring two EF-hands, typical Ca2+-binding motifs. Homologous genes were found in many land plants, including SlHREF in tomato, which is also strongly induced by hypoxia. SlHREF induction was detected in both roots and shoots of tomato plants under hypoxia. With the exception of OsHREF5, OsHREF expression was unaffected by drought, salinity, cold, or osmotic stress. Fluorescent signals of green fluorescent protein-fused OsHREFs were detected in the cytosol and nucleus. Ruthenium red, an inhibitor of intracellular Ca2+ release, repressed induction of OsHREF1-4 under hypoxia. The HREFs may be related to the Ca2+ response to hypoxia.  相似文献   
6.
7.
8.
We have studied the displacement of Ca(2+)by the trivalent lanthanide ions (Yb(3+)) in a protozoan (Entamoeba histolytica) Ca(2+)-binding protein (EhCaBP), by NMR and thermodynamics. We have demonstrated, for the first time, how one can use in a combined fashion the utility of NMR and thermodynamics to have an insight to the relative binding specificities/affinity between Ca(2+) and Yb(3+). As revealed by the titration experiments, Yb(3+) displaces Ca(2+) from the four metal binding sites present in EhCaBP in a sequential manner. The study provides a structural origin for such a sequential Ca(2+) displacement by Yb(3+) in EhCaBP.  相似文献   
9.
Calmodulin and other members of the EF-hand protein family are known to undergo major changes in conformation upon binding Ca(2+). However, some EF-hand proteins, such as calbindin D9k, bind Ca(2+) without a significant change in conformation. Here, we show the importance of a precise balance of solvation energetics to conformational change, using mutational analysis of partially buried polar groups in the N-terminal domain of calmodulin (N-cam). Several variants were characterized using fluorescence, circular dichroism, and NMR spectroscopy. Strikingly, the replacement of polar side chains glutamine and lysine at positions 41 and 75 with nonpolar side chains leads to dramatic enhancement of the stability of the Ca(2+)-free state, a corresponding decrease in Ca(2+)-binding affinity, and an apparent loss of ability to change conformation to the open form. The results suggest a paradigm for conformational change in which energetic strain is accumulated in one state in order to modulate the energetics of change to the alternative state.  相似文献   
10.
Visinin-like protein-1 (VILIP-1), a myristoylated calcium sensor protein with three EF-hand motifs, modulates adenylyl cyclase activity. It translocates to membranes when a postulated "calcium-myristoyl switch" is triggered by calcium-binding to expose its sequestered myristoyl moiety. We investigated the contributions of the EF-hand motifs to the translocation of VILIP-1 to membranes and to the modulation of adenylyl cyclase activity. Mutation of residues crucial for binding calcium within each one of the EF-hand motifs indicated that they all contributed to binding calcium. Simultaneous mutations of all of the three EF-hand motifs completely abolished VILIP-1's ability to bind calcium, attenuated but did not eliminate its modulation of adenylyl cyclase activity, and abolished its calcium-dependence for association with cellular membranes. These results show that the calcium-binding EF-hand motifs of VILIP-1 do not have an essential role in modulating adenylyl cyclase activity but instead have a structural role in activating the "calcium-myristoyl switch" of VILIP-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号