首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Predatory traces, in which the tracemaker has damaged the prey animal's skeleton to kill and consume it, have a deep fossil history and have received much scientific attention. Several types of predatory traces have been assigned to ichnotaxa, but one of the most studied predatory traces, the wedge-shaped excision produced as a result of attacks mainly by crustaceans on the apertures of gastropod shells, has yet to be described as an ichnotaxon. We propose the ichnogenus Caedichnus to describe the shell damage produced by aperture peeling behavior. Caedichnus is produced by predators that are unable to crush their prey's shells outright. Depending on the predator's peeling ability and the prey's withdrawal depth within the shell, the trace can extend through several whorls of the shell. Aperture peel attacks may fail, allowing such damage to be repaired by surviving gastropods. Thus, the types of attacks that produce Caedichnus may exert selective pressure on prey to evolve better-defended shells (in the case of gastropods) or to inhabit better-defended shells (in the case of hermit crabs). The identification of these trace fossils will enhance our understanding of how predation influences the morphological, and even behavioral, evolution of prey organisms.  相似文献   
2.
Organismal performance changes over ontogeny as the musculoskeletal systems underlying animal behavior grow in relative size and shape. As performance is a determinant of feeding ecology, ontogenetic changes in the former can influence the latter. The horn shark Heterodontus francisci consumes hard-shelled benthic invertebrates, which may be problematic for younger animals with lower performance capacities. Scaling of feeding biomechanics was investigated in H. francisci (n=16, 19–59 cm standard length (SL)) to determine the biomechanical basis of allometric changes in feeding performance and whether this performance capacity constrains hard-prey consumption over ontogeny. Positive allometry of anterior (8–163 N) and posterior (15–382 N) theoretical bite force was attributed to positive allometry of cross-sectional area in two jaw adducting muscles and mechanical advantage at the posterior bite point (0.79–1.26). Mechanical advantage for anterior biting scaled isometrically (0.52). Fracture forces for purple sea urchins Strongylocentrotus purpuratus consumed by H. francisci ranged from 24 to 430 N. Comparison of these fracture forces to the bite force of H. francisci suggests that H. francisci is unable to consume hard prey early in its life history, but can consume the majority of S. purpuratus by the time it reaches maximum size. Despite this constraint, positive allometry of biting performance appears to facilitate an earlier entry into the durophagous niche than would an isometric ontogenetic trajectory. The posterior gape of H. francisci is significantly smaller than the urchins capable of being crushed by its posterior bite force. Thus, the high posterior bite forces of H. francisci cannot be fully utilized while consuming prey of similar toughness and size to S. purpuratus, and its potential trophic niche is primarily determined by anterior biting capacity.  相似文献   
3.
Predation on ancient shelled prey is an often-studied topic in paleoecology, but the early Paleozoic and the brachiopods that dominated the seafloor at that time are relatively underrepresented in the predation literature. We assessed predatory repair scar frequencies among the brachiopod genera from the Early Richmondian (Late Ordovician) Oregonia Member (Arnheim Formation) near Flemingsburg, Kentucky. We found higher repair frequencies on the concavo-convex Rafinesquina and Leptaena relative to the bi-convex genera. There were no trends in repair frequency through the stratigraphic section and no relationships between repair frequency and community diversity metrics. It is possible that concavo-convex brachiopods’ flat shape, thin shell profile, and free-lying (no pedicle attachment) lifestyle made them more likely or appealing targets of Ordovician crushing predators. It is also possible that concavo-convex brachiopods were better suited to survive crushing attacks than biconvex taxa. We also found differences in shell ornament that may influence the visibility of repair scars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号