首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   1篇
  24篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour.  相似文献   
2.
The development of tissue culture systems in duckweeds has, to date, been limited to species of the genus Lemna. We report here the establishment of an efficient tissue culture cycle (callus induction, callus growth and plant regeneration) for Spirodela oligorrhiza Hegelm SP, Spirodela punctata 8717 and Lemna gibba var. Hurfeish. Significant differences were found among the three duckweed species pertaining to carbohydrate and phytohormone requirements for callus induction, callus growth and frond regeneration. In vitro incubation with poorly assimilated carbohydrates such as galactose (S. oligorrhiza SP and L. gibba var. Hurfeish) and sorbitol (S. punctata 8717) as sole carbon source yielded high levels of callus induction on phytohormone-supplemented medium. Sorbitol is required for optimal callus growth of S. oligorrhiza SP and S. punctata 8717, while sucrose is required for callus growth of L. gibba var. Hurfeish. Sucrose either alone (S. oligorrhiza SP, L. gibba var. Hurfeish) or in addition to sorbitol (S. punctata 8717) is required for frond regeneration.Abbreviations ABA: (±)-Abscisic acid - BA: N6-Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid - Dicamba: 3,6-Dichloro-2-methoxybenzoic acid - 2iP: N6-(2-Isopentenyl)adenine - NAA: -Naphthaleneacetic acid - PCA: p-Chlorophenoxy acetic acid - Picloram: 4-Amino-3,5,6-trichloropicolinic acid - TDZ: Thidiazuron Communicated by A. AltmanJ. Li and M. Jain contributed equally to the research reported in this article.  相似文献   
3.
Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system.  相似文献   
4.
  • Duckweed is considered a promising feedstock for bioethanol production due to its high biomass and starch production. Selection of duckweed strains with high starch accumulation is essential for application of duckweeds to bioethanol production. Geographic differentiation had a large influence on genetic diversity of duckweeds.
  • Biomass production, starch content and starch amount in geographically isolated strains of 20 Lemna aequinoctialis and Spirodela polyrhiza were calculated to evaluate their potential for bioethanol production. The influence of different collection time, culture medium and NaCl concentration on starch accumulation of the best strains were analysed.
  • The results showed that biomass production, starch content and starch production of duckweeds demonstrated clonal dependency. The best strain was L. aequinoctialis 6000, with biomass production of 15.38 ± 1.47 g m?2, starch content of 28.68 ± 1.10% and starch production of 4.39 ± 0.25 g m?2. Furthermore, starch content of L. aequinoctialis 6000 was highest after 8 h of light, tap water was the best medium for starch induction, and NaCl did not induce starch accumulation.
  • This study suggests duckweed biomass production and starch production demonstrate clonal dependency, indicating that extensive clonal comparisons will be required to identify the most suitable isolates for duckweed selective breeding for bioethanol.
  相似文献   
5.
Wastewater treatment at the Houghton Lake wetland: Vegetation response   总被引:4,自引:4,他引:0  
This paper describes the vegetation responses in a very long-running study of the capacity of a natural peatland to remove nutrients from treated wastewater. Data are here presented and analyzed from three decades of full-scale operation, during which large changes in the plant communities occurred. An average of 600,000 m3 year−1 of treated wastewater was discharged seasonally (May 1–October 31) to the Porter Ranch peatland near the community of Houghton Lake, Michigan. This discharge was seasonal, commencing no sooner than May 1 and ending no later than October 31. During the winter half-year, treated wastewater was stored at the lagoon site. This water contained 3.5 mg/L of total phosphorus, and 7 mg/L of dissolved inorganic nitrogen (DIN). Nutrients were stored in the 100 ha irrigation area, which removed 94% of the phosphorus (53 metric tons) and 95% of the dissolved inorganic nitrogen. Phosphorus was stored in new biomass, increased soil sorption, and accretion of new soils and sediments, with accretion being dominant. The irrigation area underwent large changes in ecosystem structure, in which the original plant communities were displaced by Typha spp. There was an initial fertilizer response, characterized by much larger standing crops of vegetation, at about triple the crop in control areas. Increased biomass was accompanied by increases in tissue nitrogen and phosphorus content, by factors of two and three, respectively. The plant community shift, from the initial sedge-willow and leatherleaf-bog birch cover types to a cattail-dominant cover type, progressed to a 83-ha area over the 30-year period of record (POR). The interior portion of this new cattail patch became a floating mat. There were large gradients in stem densities and stem heights within the impacted area. The response times of the vegetative community shifts were on the order of 10 years for 63% of the final impact zone development. The grow-in time for development of a new larger standing crop in the discharge zone was also 10 years. The impacted area was stable at the 30-year time, without any further moving fronts. Around the cattail zone, there were fringe areas that contained a mixture of the original cover types intruded by relatively small amounts of cattail.  相似文献   
6.
Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.   总被引:2,自引:0,他引:2  
The uptake of zinc (Zn) by the duckweed Lemna gibba L., native to the north-east region of Algeria, was investigated in quarter Coïc solutions enriched with 6.0, 10.0, 14.0 and 18.0 mg l−1 of Zn supplied as zinc sulphate (ZnSO4). Zinc concentrations were measured in the water daily and in duckweed biomass at the end of the experiments. These results showed that under experimental conditions (pH = 6.0 ± 0.1, T = 21 ± 1 °C, photoperiod = 12 h/j), L. gibba was able to accumulate in its biomass 4.23; 15.62; 23.88 and 25.81 mg g−1 DM, respectively for the four initial concentrations selected. At these concentrations, the metal removed percentages were 61–71%. The mass balance performed on the system showed that about 49–68% of Zn (depending on the initial concentration in water) was removed by precipitation as zinc phosphate. The results showed that this aquatic plant can be successfully used for Zn removal.  相似文献   
7.
An Algol-E computer program for the processing of BTEC assessment grades is described. The program provides for student listing and the printing of individual student's results or individual unit results with automatic updating of cumulative weighted means. Examples of hard copy are provided.  相似文献   
8.
9.
We tried to find the reasons for frequently observed low biomass of Lemna minor among floating rosettes of Stratiotes aloides as opposed to the abundance of Spirodela polyrhiza in these stands. The effect of S. aloides on L. minor was analysed in outdoor culture experiments. The duckweed collected from among dense stands of the floating form of S. aloides (test sites) showed a significantly lower growth rate than that from stands free of the water soldier (control sites). Water from the latter stands was significantly richer in nitrate-nitrogen and ammonium-nitrogen, but not in soluble reactive phosphorus suggesting possible nutrient depletion as a reason for observed differences. Growth rates of L. minor were indeed significantly correlated with in situ concentrations of all dissolved nutrients and showed saturation at around 0.18 mg N-NH4 dm−3 and 0.05 mg SRP dm−3 above which the growth rates did not increase significantly. We used stepwise regression to test the combined effect of nutrients and the presence/absence of S. aloides on the growth rate of L. minor. The regression showed a negligible effect of ammonium ions and nitrates on the growth rate of the duckweed. At low concentrations of soluble reactive phosphorus the presence of both the S. aloides and SRP concentrations significantly affected the growth of L. minor. Above saturating SRP concentrations none of the two effects was significant. Results of our experiments seem to suggest that the presence of S. aloides exerts a negative effect on the growth of L. minor only at low concentrations of soluble phosphorus. Since the depletion of nutrients in water by the floating form of S. aloides is unlikely, we point to S. polyrhiza as a superior competitor for nutrients and suggest a possible allelopathic effect of the water soldier on L. minor.  相似文献   
10.
The feasibility of oxygen transfer rate (OTR) measurement to non-destructively monitor plant propagation and vitality of photosynthetically active plant in vitro culture of duckweed (Wolffia australiana, Lemnaceae) was tested using Respiration Activity Monitoring System (RAMOS). As a result, OTR proofed to be a sensitive indicator for plant vitality. The culture characterization under day/night light conditions, however, revealed a complex interaction between oxygen production and consumption, rendering OTR measurement an unsuitable tool to track plant propagation. However, RAMOS was found to be a useful tool in preliminary studies for process development of photosynthetically active plant in vitro cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号