首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   5篇
  国内免费   2篇
  164篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   28篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
1.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   
2.
Estimating the rate of photorespiration in leaves   总被引:20,自引:1,他引:19  
The influence of Li+ on the circumnutations of hypocotyls of Helianthus annuus L . cv. Californicus was investigated. LiCl at concentration levels from 0 to 40 m M (lethal) was added to intact hypocotyls grown in liquid nutrient medium. The Li+ concentration in the hypocotyls was measured by flame photometry. The growth of the hypocotyls was not affected by the LiCl.
Amplitude and frequency of the circumnutations were determined by correlation analysis. The oscillatory pattern of the movements became less regular at concentrations above 10 m M LiCl. The amplitude of the movements was reduced for concentrations above 7 m M LiCl. The frequency of the movements was reduced when LiCl was increased from 0 to 10 m M . Above 10 m M LiCl the frequency of the circumnutations was higher than for control plants. The results showed that circumnutations of sunflower hypocotyls can be added to the group of oscillators in biological organisms that are affected by Li+.  相似文献   
3.
Hebbian dynamics is used to derive the differential equations for the synaptic strengths in the neural circuitry of the locomotive oscillator. Initially, neural connection are random. Under a specified arborization hypothesis relating to the density of neural connections, the differential equations are shown to model the self-organization and the stability of the oscillator.  相似文献   
4.
We have developed a biophysical model of a pair of reciprocally inhibitory interneurons comprising an elemental heartbeat oscillator of the leech. We incorporate various intrinsic and synaptic ionic currents based on voltage-clamp data. Synaptic transmission between the interneurons consists of both a graded and a spike-mediated component. By using maximal conductances as parameters, we have constructed a canonical model whose activity appears close to the real neurons. Oscillations in the model arise from interactions between synaptic and intrinsic currents. The inhibitory synaptic currents hyperpolarize the cell, resulting in activation of a hyperpolarization-activated inward currentI h and the removal of inactivation from regenerative inward currents. These inward currents depolarize the cell to produce spiking and inhibit the opposite cell. Spike-mediated IPSPs in the inhibited neuron cause inactivation of low-threshold Ca++ currents that are responsible for generating the graded synaptic inhibition in the opposite cell. Thus, although the model cells can potentially generate large graded IPSPs, synaptic inhibition during canonical oscillations is dominated by the spike-mediated component.  相似文献   
5.
6.
Transmission electron microscopy (TEM) observation of pollen grains of 18 species belongingto 18 respective genera of the tribe Peucedaneae Drude revealed distinct ultrastructural difference in thepollen exine, including the thickness and features of rectum, columnar layer, foot layer and endexine. Thesystematic position of those 18 species are re-evaluated based on their ultrastructural characteristics ofpollen exine observed in this study. Seven genera related to Angelica L. in Angelicinae Drude have beendeduced to genus Angelica L. For example, Osterfcum grosseserratum (Maxim.) Kitagawa was changed toAngelica L. by some authors, but it differs from Angelica sinensis (Oliv.) Diels in having well developedtectum which is thicker than the columnar layer and foot layer. Its columnar layer is quite well-developedwith long and branched columellae. Besides its surface is tuberculated. Evidently, its development exceedsthat of Angelica sinensis. However, it is only a moderate evolutional species in its genus, and the Angelicasinensis accounts as the most advanced species in Angelica Diels, thus, placing genus Ostencum Hoffm.in Angelica L is not suitable, it may be more appropriate to keep its original position. In addition, Ferulaakitschkensis B. Fedtsch. ex K.-Pol. differs greatly from those of Talassia transiliensis (Herd.) Korov. andSchumannia turcomnnia Kuntze, because of its very well-developed columnar layer, being about four tofive times thicker than the total of tectum and foot layer, tuberculated tectum surface and complicatedstructure of columnellae. As another species Heracleum forrestJ‘iWolff also differs from Semenovia rubtzovii(Schischk.) Monden. in having an even thickness of exine and well-developed columnar layer, it seemssuitable that they should also be treated as two independent genera.  相似文献   
7.
Experiments on the effects of extremely-low-frequency (ELF) electric and magnetic fields on cells of the immune system, T-lymphocytes in particular, suggest that the external field interacts with the cell at the level of intracellular signal transduction pathways. These are directly connected with changes in the calcium-signaling processes of the cell. Based on these findings, a theoretical model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal transduction pathway is presented. We discuss the possibility that the external field acts on the kinetics of the signal transduction between the activated receptors at the cell membrane and the G-proteins. It is shown that, depending on the specific combination of cell internal biochemical and external physical parameters, entirely different responses of the cell can occur. We compare the effects of a coherent (periodic) modulation and of incoherent perturbations (noise). The model and the calculations are based on the theory of self-sustained, nonlinear oscillators. It is argued that these systems form an ideal basis for information-encoding processes in biological systems. © 1995 Wiley-Liss, Inc.  相似文献   
8.
9.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
《Chronobiology international》2013,30(8):1050-1065
We investigated the circadian synchronization/desynchronization (by field-study assessment of differences in period, τ, of 16 coexisting and well-documented rhythms) of 30 healthy firemen (FM) exposed to irregular, difficult, and stressful nocturnal work hours who demonstrated excellent clinical tolerance (allochronism). Three groups of FM were studied (A?=?12 FM on 24-h duty at the fire station; B?=?9 FM on 24-h duty at the emergency call center; C?=?9 day-shift administrative FM) of mostly comparable average age, body mass index, career duration, chronotype—morningness/eveningness, and trait of field dependence/independence. The self-assessed 16 circadian rhythms were (i) physiological ones of sleep-wake (sleep log), activity-rest (actography), body temperature (internal transmitter pill probe), right- and left-hand grip strength (hand dynamometer), systolic and diastolic blood pressure (BP) plus heart rate (ambulatory BP monitoring device); (ii) psychological ones (visual analog self-rating scales) of sleepiness, fatigue, fitness for work, and capacity to cope with aggressive social behavior; and (iii) cognitive ones of eye-hand skill and letter cancellation, entailing performance speed (tasks completed/unit time) and accuracy (errors). Data (4–6 time points/24?h; 2 591 480 values in total) were gathered continuously throughout two 8-d spans, one in winter 2010–2011 and one in summer 2011. Each of the resulting 938 unequal-interval time series was analyzed by a special power spectrum analysis to objectively determine the prominent τ. The desynchronization ratio (DR: number of study variables with τ?=?24.0?h/number of study variables?×?100) served to ascertain the strength/weakness of each rhythm per individual, group, and season. The field study confirmed, independent of group and season, coexistence of rather strong and weak circadian oscillators. Interindividual differences in DR were detected between groups and seasons (χ2, correlation tests, analysis of variance [ANOVA]). Moreover, in each group, both in winter and summer, a normal distribution was observed in the number of FM with rhythms with τ?=?24.0?h, e.g., ranging from 5/16 (large desynchronization) to 16/16 (no desynchronization). Such a normal distribution with intraindividual stability over time (i.e., seasons) is consistent with the hypothesis of an inherited origin of a differential propensity to circadian desynchronization and which is supported by the distribution of τs in winter and summer following the Dian-Circadian Genetic Model, i.e., with τ?=?24.0?h, τ?=?24.0?h?+?n(0.8?h), and τ?=?24.0?h???n(0.8?h).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号