首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  1986年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes.In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south–north productivity gradient.We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m × 0.25 m). All traits varied significantly along the S–N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S–N gradient.Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass).Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.  相似文献   
2.
The availability of the complete genome sequences has facilitated access to essential information to identify proteins. The determination of Arabidopsis genome sequence has had a great impact to annotate data. The genome sequencing of Sorghum bicolor has been only recently completed and hither to the global response to abiotic stresses in this important crop remains largely unexplored. We used 2-D gel electrophoresis based proteomic approach refined with MALDI-TOF to analyze drought-stress response proteins in sorghum. Major changes in protein complement of sorghum were observed in hydroponic cultures at 96 hours under drought stress. Six most highly expressed proteins were excised for functional identification. Here, we developed a method to obtain functional distances between GO terms and analyzed distance values to allocate shortest path (SP) in GO hierarchy. The shortest paths for expressed proteins were noted for most informative common ancestor (MICA) terms, viz. binding, catalytic activity and primary metabolic process. We observed the expressed proteins belonged to the functional group of signal transduction mechanisms, carbohydrate transport and metabolism. These identified functions of proteins suggest a different mechanism of drought-stress tolerant in sorghum. The novel approach applied in this study may have great importance in further identifying proteins involved in abiotic and biotic stress conditions in crops.  相似文献   
3.
This study characterized morphological and physiological responses of two Malus species to exogenous abscisic acid (ABA) application under both well-watered and drought-stressed conditions. Exogenous ABA was sprayed onto the leaves of potted 1-year-old seedlings of M. sieversii and M. hupehensis, originated from regions with low annual rainfall and high annual rainfall, respectively. The results demonstrated that exogenous ABA application significantly decreased height growth (H), total biomass (TB), total leaf area (LA), net photosynthesis (A) and stomatal conductance (g s), and significantly increased root/shoot ratio (RS), specific leaf area (SLA), endogenous ABA concentration, water use efficiency (WUE) and carbon isotope composition (δ13C) under both well-watered and drought-stressed conditions. However, distinct interspecific differences were found in ABA-induced morphological and physiological responses. Compared with M. hupehensis, M. sieversii was more responsive to exogenous ABA application, resulting in larger decreases in H, LA, A and g s, and larger increases in RS, SLA, WUEL, WUEi, ABA and δ13C. These results suggest strong evidence for different maintenance of fitness under stressful conditions between species of Malus. In addition, application of exogenous ABA appears to enhance the tolerance of two Malus species to drought-stress.  相似文献   
4.
While many compounds have been reported to change in laboratory based drought-stress experiments, little is known about how such compounds change, and are significant, under field conditions. The Pisum sativum L. (pea) leaf metabolome has been profiled, using 1D and 2D NMR spectroscopy, to monitor the changes induced by drought-stress, under both glasshouse and simulated field conditions. Significant changes in resonances were attributed to a range of compounds, identified as both primary and secondary metabolites, highlighting metabolic pathways that are stress-responsive. Importantly, these effects were largely consistent among different experiments with highly diverse conditions. The metabolites that were present at significantly higher concentrations in drought-stressed plants under all growth conditions included proline, valine, threonine, homoserine, myoinositol, γ-aminobutyrate (GABA) and trigonelline (nicotinic acid betaine). Metabolites that were altered in relative amounts in different experiments, but not specifically associated with drought-stress, were also identified. These included glutamate, asparagine and malate, with the last being present at up to 5-fold higher concentrations in plants grown in field experiments. Such changes may be expected to impact both on plant performance and crop end-use. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
Summary Rough lemon citrus seedlings were inoculated withFusarium solani and evaluated for changes in water relations of leaves, stems, and roots. Inoculated seedlings had decreased leaf stomatal conductance, lower leaf water potential, lower water content, and higher leaf osmotic values compared to healthy plants. Visible wilt symptoms occurred as early as 24 h after inoculation. Transpiration and root conductivity were lower in diseased plants but stem conductivity in diseased plants did not differ from the control. Thus, wilting appears to be due to the inability of roots to supply water to the leaves.  相似文献   
6.
植物受到环境胁迫后体内会产生活性氧自由基等有害物质,破坏质膜透性,导致植物生长受到抑制。经研究发现脱落酸(ABA)和水杨酸(SA)作为植物的生长调节物质对于提高植物抗性,维持植物正常生长具有重要的意义。综述近年来国内外有关ABA和SA提高植物抗性的最新进展,为研究提高植物抗性提供理论参考。  相似文献   
7.
Cellular polyamine content often changes in response to abiotic stresses. However, its physiological relevance is unknown. We found that an Arabidopsis mutant plant (acl5/spms), which cannot produce spermine, is hypersensitive to high salt. Examination of drought sensitivity of the mutant and comparison with wild type plants indicated hypersensitivity to drought. This phenotype was cured by spermine pretreatment but not by the other polyamines putrescine and spermidine, suggesting that drought-hypersensitivity exhibited by the mutant is due to spermine deficiency. The water loss rate of wild type and mutant plants were similar until 20 min after onset of dehydration stress, but after a longer exposure the rate in mutant plants was higher than in wild type plants. Consistent with this result, the stomata of the mutant leaves remained open while in wild type leaves they closed. Based on the collected data, we discuss a role for spermine in response to drought stress.  相似文献   
8.
To investigate the function of nuclear-localized plant HSP70, we used NtHSP70-1 isolated from Nicotiana tabacum. The subcellular localization of NtHSP70-1 was identified by fluorescence microscopy for NtHSP70-1/GFP or smGFP fusion proteins in onion epidermal cells, obtained using particle gun bombardment. To analyze the drought-stress tolerance and thermoprotective role of NtHSP70-1, we obtained transgenic tobacco plants that constitutively expressed elevated levels of NtHSP70-1 as well as transgenic plants containing either the vector alone or else having NtHSP70-1 in the antisense orientation. From analysis for genomic DNA in transgenic seedlings after heat stress, NtHSP70-1 helps to prevent the fragmentation and degradation of nuclear DNA during heat stress. In addition, seedlings constitutively overexpressing NtHSP70-1 grew to be healthy plants, whereas transgenic vector or antisense seedlings resulted in death after heat-/drought-stress.  相似文献   
9.
Groundnut (Arachis hypogea L.), is an important legume cash crop for the tropical farmers and its seeds contain high amounts of edible oil (43–55%) and protein (25–28%). Even though it is a fairly drought-tolerant, production fluctuates considerably as a result of rainfall variability. To develop a water stress response function in groundnut, research works have been done to improve the performance under varying degrees of stress at various physiological stages of crop growth. This review summarizes recent information on drought resistance characteristics of groundnut with a view toward developing appropriate genetic enhancement strategies for water-limited environments. It is suggested that there are considerable gains to be made in increasing yield and stabilizing the yield in environments characterized by terminal drought stress and by shortening crop duration. Many traits conferring dehydration avoidance and dehydration tolerance are available, but integrated traits, expressing at a high level of organization are suggested to be more useful in crop improvement programs. Possible genetic improvement strategies are outlined, ranging from empirical selection for yield in drought environments to a physiological–genetic approach. It was also suggested that in view of recent advances in understanding drought resistance mechanisms, the later strategy is becoming more feasible. It is summarized that application of knowledge into practice in a systematic manner can lead to significant gains in yield and yield stability of the worlds groundnuts production. Research is needed to develop transferable technology to help farmers of arid and semi-arid regions. Increasing soil moisture storage by soil profile management and nutrient management for quick recovery from drought are some of the areas that need to be explored further.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号