首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   8篇
  国内免费   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   11篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   9篇
  2008年   11篇
  2007年   13篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1976年   1篇
排序方式: 共有179条查询结果,搜索用时 16 毫秒
1.
Three qualities of sound—the directional, the temporal and the spectral—are important for intraspecific communication in Orthoptera. The neural mechanisms employed by identified interneurones for encoding these sound qualities are illustrated by examples of physiological processes found at different levels of the CNS. Discussed are: (1) the creation of directional information by local interneurones in the thorax, and the use of time-intensity trading in sound location; (2) mechanisms for encoding the temporal parameters of sound by interneurones ascending to the brain; (3) frequency-dependent neural filtering of auditory information by local interneurones.  相似文献   
2.
We examined factors that affect spatial receptive fields of single units in the central nucleus of the inferior colliculus of Eptesicus fuscus. Pure tones, frequency- or amplitude-modulated sounds, or noise bursts were presented in the free-field, and responses were recorded extracellularly. For 58 neurons that were tested over a 30 dB range of sound levels, 7 (12%) exhibited a change of less than 10° in the center point and medial border of their receptive field. For 28 neurons that were tested with more than one stimulus type, 5 (18%) exhibited a change of less than 10° in the center point and medial border of their receptive field.The azimuthal response ranges of 19 neurons were measured in the presence of a continuous broadband noise presented from a second loudspeaker set at different fixed azimuthal positions. For 3 neurons driven by a contralateral stimulus only, the effect of the noise was simple masking. For 11 neurons driven by sound at either side, 8 were unaffected by the noise and 1 showed a simple masking effect. For the remaining 2, as well as for 5 neurons that were excited by contralateral sound and inhibited by ipsilateral sound, the peak of the azimuthal response range shifted toward the direction of the noise.Abbreviations E/E excitation at either ear - I/E inhibition at the ipsilateral ear, excitation at the contralateral ear - O/E no effect from the ipsilateral ear, excitation at the contralateral ear - FM downward frequency modulation - FM upward frequency modulation - IC inferior colliculus - ICC central nucleus of the inferior colliculus - ILD interaural level difference - ITD interaural time difference - PT pure tone - SAM sinusoidally amplitude modulated sounds - SFM sinusoidally frequency modulated sounds  相似文献   
3.
Single-unit recordings were made from 143 neurons in the frog (Rana p. pipiens) inferior colliculus (IC) to investigate how free-field sound direction influenced neural responses to sinusoidal-amplitude-modulated (SAM) tone and/or noise. Modulation transfer functions (MTFs) were derived from 3 to 5 sound directions within 180° of frontal field. Five classes of MTF were observed: low-pass, high-pass, band-pass, multi-pass, and all-pass. For 64% of IC neurons, the MTF class remained unchanged when sound direction was shifted from contralateral 90° to ipsilateral 90°. However, the MTFs of more than half of these neurons exhibited narrower bandwidths when the loudspeaker was shifted to ipsilateral azimuths. There was a decrease in the cut-off frequency for neurons possessing low-pass MTFs, an increase in cut-off frequency for neurons showing high-pass MTFs, or a reduction in the pass-band for neurons displaying bandpass MTFs. These results suggest that sound direction can influence amplitude modulation (AM) frequency tuning of single IC neurons.Since changes in periodicity of SAM tones alter both the temporal parameters of sounds as well as the sound spectrum, we examined whether directional effects on spectral selectivity play a role in shaping the observed direction-dependent AM selectivity. The directional influence on AM selectivity to both SAM tone and SAM noise was measured in 62 neurons in an attempt to gain some insight into the mechanisms that underlie directionally-induced changes in AM selectivity. Direction-dependent changes in the shapes of the tone and noise derived MTFs were different for the majority of IC neurons (55/62) tested. These data indicate that a spectrally-based and a temporally-based mechanism may be responsible for the observed results.Abbreviations AM amplitude modulation - CF characteristic frequency - DI direction index - FR isointensity frequency response - GABA gamma-aminobutyric acid - IC inferior colliculus - ICc central nucleus of the inferior colliculus - ITD interaural time difference - MTF modulation transfer function - PSTH peri-stimulus time histogram - SAM sinusoidal-amplitude-modulated - SC synchronization coefficient - CN cochlear nucleus  相似文献   
4.
Summary The pallid bat (Antrozous p. pallidus) uses passive sound localization to capture terrestrial prey. This study of captive pallid bats examined the roles of echolocation and passive sound localization in prey capture, and focused on their spectral requirements for accurate passive sound localization.Crickets were used as prey throughout these studies. All tests were conducted in dim, red light in an effort to preclude the use of vision. Hunting performance did not differ significantly in red light and total darkness, nor did it differ when visual contrast between the terrestrial prey and the substrate was varied, demonstrating that the bats did not use vision to locate prey.Our bats apparently used echolocation for general orientation, but not to locate prey. They did not increase their pulse emission rate prior to prey capture, suggesting that they were not actively scanning prey. Instead, they required prey-generated sounds for localization. The bats attended to the sound of walking crickets for localization, and also attacked small, inanimate objects dragged across the floor. Stationary and/or anesthetized crickets were ignored, as were crickets walking on substrates that greatly attenuated walking sounds. Cricket communication sounds were not used in prey localization; the bats never captured stationary, calling crickets.The accuracy of their passive sound localization was tested with an open-loop passive sound localization task that required them to land upon an anesthetized cricket tossed on the floor. The impact of a cricket produced a single 10–20 ms duration sound, yet with this information, the bats were able to land within 7.6 cm of the cricket from a maximum distance of 4.9 m. This performance suggests a sound localization accuracy of approximately ±1° in the horizontal and vertical dimensions of auditory space. The lower frequency limit for accurate sound localization was between 3–8 kHz. A physiological survey of frequency representation in the pallid bat inferior colliculus suggests that this lower frequency limit is around 5 kHz.  相似文献   
5.
野外川金丝猴声音行为的主要类型   总被引:3,自引:0,他引:3  
李保国  罗时有 《兽类学报》1993,13(3):181-187
川金丝猴(Rhinopithecus roxellana)栖息于高山森林中,营树栖生活,其声音通讯在社群活动中有重要意义。通过长期野外行为的观察和声音的录制,本文报道了川金丝猴在野外自然活动条件下声音行为的主要类型,明显可以辩别出惊异声、警戒声、警告声、呼唤声和安静状态下的叫声,并进行了声谱分析,发现其声谱的差异主要与声音目的有关,同时描述了每类声音发出相伴随的群的行为和身体运动的变化,讨论了笼养条件下和野外状况下川金丝猴声音行为的异同。  相似文献   
6.
Abstract: This paper presents an estimate of the total number of sea otters that died as a direct consequence of the oil spill that occurred when the T/V Exxon Valdez grounded in Prince William Sound, Alaska on 24 March 1989. We compared sea otter counts conducted from small boats throughout the Sound during the summers of 1984 and 1985 to counts made after the spill during the summer of 1989. We used ratio estimators, corrected for sighting probability, to calculate otter densities and population estimates for portions of the Sound affected by the oil spill. We estimated the otter population in the portion of Prince William Sound affected by the oil was 6,546 at the time of the spill and that the post-spill population in the summer of 1989 was 3,898, yielding a loss estimate of approximately 2,650. Bootstrapping techniques were used to approximate confidence limits on the loss estimate of about 500–5,000 otters. The wide confidence limits are a result of the complex scheme required to estimate losses and limitations of the data. Despite the uncertainty of the loss estimate it is clear that a significant fraction of the otters in the spill zone survived. We observed otters persisting in relatively clean embayments throughout the oil spill zone suggesting that the highly convoluted coastline of Prince William Sound produced refuges that allowed some sea otters in the oil spill area to survive.  相似文献   
7.
Wild, downstream‐migrating cutthroat trout, Oncorhynchus clarkii clarkii, smolts and adults were captured at a weir in Big Beef Creek, Hood Canal, Washington, surgically implanted with acoustic tags and tracked to identify spring and summer movements using stationary receivers in order to test the assumption that the species moves little while in marine waters. Overall, 93–96% migrated from the stream into the east side of the long narrow fjord, where they dispersed north and south along the shoreline. Most O. c. clarkii were detected nearshore within 10 km of the release site, with declining detection rates to 77 km. Over one‐third (36%) crossed c. 2–4 km of deep water to the other side but only one O. c. clarkii left the Hood Canal basin. Movements and behaviour patterns did not differ between smolts and adults but cluster analysis revealed two modes of distribution, here categorized as residents and migrants. Within these categories of overall distribution, a range of finer‐scale behaviour patterns was observed, including sedentary individuals, daily moving between proximate sites and more continuous long‐distance travel. Diel movement patterns varied markedly among individuals but overall activity increased near dawn, peaked around mid‐day and declined but continued at night. These patterns contrast with sympatric and closely related steelhead trout, Oncorhynchus mykiss, providing new insights into the diversity of salmonid behaviour.  相似文献   
8.
The study of animal acoustic signals is a central tool for many fields in ecology and evolution, but the diversity of analytical methods and sources of animal sound recordings poses important challenges for carrying out robust acoustic analyses. Sound file compression and background noise may both affect acoustic analysis, although little attention has been paid to their respective effects. We evaluated the effect of these factors by assessing the systematic deviation (i.e. bias) and measurement error (i.e. precision) that they generate on spectrographic parameters and two (dis)similarity methods (dynamic time warping on frequency contours and cross-correlation), which represent the most common methods currently used for quantitative characterization of acoustic signals. Measurements were taken across a wide range of signals from a diverse group of bird species, and compared between uncompressed files and decompressed files obtained from mp3-encoded files generated using the two most common mp3 encoders (Fraunhofer and LAME). Measurements were also compared across a range of synthetically-generated background noise levels. Compression did not significantly bias any of the acoustic or similarity measurements. However, the precision of acoustic parameters representing single extreme values (e.g. peak frequency) as well as dynamic time warping distances, was strongly affected by compression. High background noise biased most energy distribution-related parameters (e.g. spectral entropy) and affected the precision of most acoustic parameters and dynamic time warping. Overall, compression and background noise did have considerable effects on acoustic analyses. We provide recommendations to avoid potential pitfalls and maximize the information that can be reliably obtained.  相似文献   
9.
Several species of the toxigenic diatom Pseudo-nitzschia, together with low concentrations of domoic acid (DA) in shellfish have been observed in Puget Sound, Washington State, since 1991. However, for the first time in September 2003, high-density blooms of Pseudo-nitzschia forced the closure of recreational, commercial, and tribal subsistence shellfish harvesting in Puget Sound. Here we report on the environmental conditions associated with shellfish closures in two inland waterways of Washington State during the Fall 2005. In Sequim Bay, shellfish harvest losses occurred on September 12 following the measurement of elevated macronutrient levels on September 2, and a bloom of P. pseudodelicatissima (up to 13 million cells/L) on September 9. Ambient NH4 concentrations >12 μM (measured on September 2) were likely due to anthropogenic sources, ostensibly from sewage inputs to Sequim Bay. The closure of a Penn Cove commercial shellfish farm on October 16 was caused by a bloom of P. australis that followed a period of sustained precipitation, elevated Skagit River flow, and persistent southeasterly winds. The relative importance of a number of environmental factors, including temperature, stratification caused by rivers, and nutrient inputs, whether natural or anthropogenic, must be carefully studied in order to better understand the recent appearance of massive blooms of toxigenic Pseudo-nitzschia in the inland waterways of Washington State.  相似文献   
10.
Sound production in cicadas is powered by a pair of large muscles whose contractions cause buckling of cuticular tymbals and thereby create sound pulses. Sound is modulated by control muscles that alter the stiffness of the tymbals or change the shape of the abdominal resonance chamber. Muscle ultrastructure and contractile properties were characterized for the tymbal muscle and two control muscles, the ventral longitudinal muscle and the tymbal tensor, of the periodical cicada Magicicada septendecim. The tymbal muscle is a fast muscle that is innervated by a single motoraxon. The control muscles are an order of magnitude less massive than the tymbal muscles, but their innervation patterns were considerably more complex. The tensor muscle is innervated by two axons, each of which evokes rather slow twitches, and the ventral muscle is innervated by at least six axons, some of which produce fast and the others slow contractions. Muscle contraction kinetics correlated well with ultrastructure. Fibers of the tymbal muscle and the portions of the ventral muscle thought to be fast were richly supplied with transverse tubules (T-tubules) and sarcoplasmic reticulum (SR); slow portions of the ventral muscle and the tensor muscle had relatively little SR.Abbreviations SR sarcoplasmic reticulum - TTS transverse tubular system - VLM ventral longitudinal muscle  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号