首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   70篇
  国内免费   17篇
  2024年   3篇
  2023年   28篇
  2022年   14篇
  2021年   40篇
  2020年   29篇
  2019年   57篇
  2018年   34篇
  2017年   24篇
  2016年   57篇
  2015年   58篇
  2014年   73篇
  2013年   61篇
  2012年   42篇
  2011年   49篇
  2010年   43篇
  2009年   46篇
  2008年   57篇
  2007年   38篇
  2006年   13篇
  2005年   14篇
  2004年   14篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有860条查询结果,搜索用时 47 毫秒
1.
This opinion piece offers a commentary on the four papers that address the theme of the development of self and other understanding with a view to highlighting the important contribution of developmental research to understanding of mechanisms of social cognition. We discuss potential mechanisms linking self–other distinction and empathy, implications for grouping motor, affective and cognitive domains under a single mechanism, applications of these accounts for joint action and finally consider self–other distinction in group versus dyadic settings.  相似文献   
2.
3.
A classification scheme for those population models which allow variation in development rates is proposed, based on two ways of modifying standard age-structured models. The resulting classes of models are termed development index models and sojourn time models. General formulations for the two classes of models are developed from two basic balance equations, and numerous specific models from the literature are shown to fit into the scheme. Concepts from competing risks theory are shown to be important in understanding the interplay between mortality and maturation. Relationships among the classes are investigated both for the most general forms of the models and for the simpler forms often used. The scheme can provide guidance in developing appropriate insect population models for specific modelling situations.Contribution 3878871  相似文献   
4.
The relevance of evolutionary theory to ethics goes back to Darwin but until recently discussion employed evolutionary theory to justify ethical, social and political positions. Recently, evolutionary theory has been used to explain the existence of moral systems and moral propensities and, thereby, to provide a naturalistic basis for ethics. I argue that this approach has advanced our understanding of the basis of moral systems and moral propensities but does not as yet adequately incorporate the role of cognition in its account. Cognition has the effect of decoupling to some extent — though, of course, far from fully — human moral systems from their evolutionary origins. In an adequate account, evolutionary theory will play a crucial role but so also will our evolved cognitive abilities.  相似文献   
5.
A threshold parameter R 0 is identified for an SIRS epidemiological model which has nonlinear incidence and a distributed delay for transfer out of the removed class. For R 0 < 1, the disease free equilibrium is proved to be the global attractor for all solutions.Research supplied in part by NSERC A-8965  相似文献   
6.
In the use of age structured population models for agricultural applications such as the modeling of crop-pest interactions it is often essential that the model take into account the distribution in maturation rates present in some or all of the populations. The traditional method for incorporating distributed maturation rates into crop and pest models has been the so-called distributed delay method. In this paper we review the application of the distributed delay formalism to the McKendrick equation of an age structured population. We discuss the mathematical properties of the system of ordinary differential equations arising out of the distributed delay formalism. We then discuss an alternative method involving modification of the Leslie matrix.  相似文献   
7.
A distinction is made between two definitions of animal cognition: the one most frequently employed in cognitive sciences considers cognition as extracting and processing information; a more phenomenologically inspired model considers it as attributing to a form of the outside world a significance, linked to the state of the animal. The respective fields of validity of these two models are discussed along with the limitations they entail, and the questions they pose to evolutionary biologists are emphasized. This is followed by a presentation of a general overview of what might be the study of the evolution of knowledge in animals.  相似文献   
8.
David W. Kikuchi  William L. Allen  Kevin Arbuckle  Thomas G. Aubier  Emmanuelle S. Briolat  Emily R. Burdfield-Steel  Karen L. Cheney  Klára Daňková  Marianne Elias  Liisa Hämäläinen  Marie E. Herberstein  Thomas J. Hossie  Mathieu Joron  Krushnamegh Kunte  Brian C. Leavell  Carita Lindstedt  Ugo Lorioux-Chevalier  Melanie McClure  Callum F. McLellan  Iliana Medina  Viraj Nawge  Erika Páez  Arka Pal  Stano Pekár  Olivier Penacchio  Jan Raška  Tom Reader  Bibiana Rojas  Katja H. Rönkä  Daniela C. Rößler  Candy Rowe  Hannah M. Rowland  Arlety Roy  Kaitlin A. Schaal  Thomas N. Sherratt  John Skelhorn  Hannah R. Smart  Ted Stankowich  Amanda M. Stefan  Kyle Summers  Christopher H. Taylor  Rose Thorogood  Kate Umbers  Anne E. Winters  Justin Yeager  Alice Exnerová 《Journal of evolutionary biology》2023,36(7):975-991
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.  相似文献   
9.
Integral equation models for endemic infectious diseases   总被引:6,自引:0,他引:6  
Summary Endemic infectious diseases for which infection confers permanent immunity are described by a system of nonlinear Volterra integral equations of convolution type. These constant-parameter models include vital dynamics (births and deaths), immunization and distributed infectious period. The models are shown to be well posed, the threshold criteria are determined and the asymptotic behavior is analysed. It is concluded that distributed delays do not change the thresholds and the asymptotic behaviors of the models.This work was partially supported by NIH Grant AI 13233.  相似文献   
10.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号