首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   32篇
  国内免费   15篇
  2023年   9篇
  2022年   7篇
  2021年   27篇
  2020年   8篇
  2019年   18篇
  2018年   12篇
  2017年   10篇
  2016年   11篇
  2015年   18篇
  2014年   22篇
  2013年   37篇
  2012年   22篇
  2011年   20篇
  2010年   12篇
  2009年   26篇
  2008年   20篇
  2007年   17篇
  2006年   22篇
  2005年   17篇
  2004年   17篇
  2003年   6篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   2篇
  1998年   8篇
  1997年   9篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1993年   11篇
  1992年   7篇
  1991年   9篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   7篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
1.
Vaterite otoliths were sampled from two reared populations (Celtic and Clyde Seas) of juvenile herring Clupea harengus. The crystallography, elemental composition and morphometry were analysed and compared with those of normal aragonite otoliths. The incidence of vaterite otoliths in the juveniles sampled (n = 601) ranged from 7·8% in the Clyde population to 13·9% in the Celtic Sea population, and was 5·5% in the small sample (n = 36) of wild adults examined. In all but one case fish had only one vaterite otolith; the corresponding otolith of the pair was completely aragonite. Although the majority of the juveniles sampled showed craniofacial deformities, there was no link between the skull or jaw malformation and the incidence of vaterite otoliths. All vaterite otoliths had an aragonite inner area, and vaterite deposition began sometime after the age of 90 days. The vaterite otoliths were larger and lighter than their corresponding aragonite partners, and were less dense as a consequence of the vaterite crystal structure. The vaterite areas of the otoliths were depleted in Sr, Na and K. Concentrations of Mn were higher in the vaterite areas. The transition between the aragonite inner areas and the vaterite areas was sharply delineated. Within a small spatial scale (20 μm3) in the vaterite areas, however, there was co‐precipitation of both vaterite and aragonite. The composition of the aragonite cores in the vaterite otoliths was the same as in the cores of the normal aragonite otoliths indicating that the composition of the aragonite cores did not seed the shift to vaterite. Vaterite is less dense than aragonite, yet the concentrations of Ca analysed with wavelength‐dispersive spectrometry (WDS) were the same between the two polymorphs, indicating that Ca concentrations measured with WDS are not a good indicator of hypermineralized zones with high mineral density. The asymmetry in density and size of the otoliths may cause disruptions of hearing and pressure sensitivity for individual fish with one vaterite otolith, however, the presence of vaterite otoliths did not seem to affect the growth of these laboratory reared juvenile herring.  相似文献   
2.
3.
4.
《Journal of morphology》2017,278(11):1458-1468
The plainfin midshipman fish, Porichthys notatus , is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra‐ and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro‐computerized tomography revealed that females and type II males have prominent, horn‐like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner‐ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest.  相似文献   
5.
This study examines the role of neural inhibition in auditory spatial selectivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, using a two-tone inhibition paradigm. Two-tone inhibition decreases auditory spatial response areas but increases the slopes of directional sensitivity curves of inferior collicular neurons. Inferior collicular neurons have either directionally-selective or hemifield directional sensitivity curves. A directionally-selective curve always has a peak which is at least 50% larger than the minimum. A hemifield directional sensitivity curve rises from an ipsilateral angle by more than 50% and either reaches a plateau or declines by less than 50% over a range of contralateral angles. Two-tone inhibition does not change directionally-selective curves but changes most hemifield directional sensitivity curves into directionally-selective curves. Auditory spatial selectivity determined both with and without two-tone inhibition increases with increasing best-excitatory frequency. Sharpening of auditory spatial selectivity by two-tone inhibition is larger for neurons with smaller differences between excitatory and inhibitory best frequencies. The effect of two-tone inhibition on auditory spatial selectivity increases with increasing inhibitory tone intensity but decreases with increasing intertone interval. The implications of these findings in bat echolocation are discussed. Accepted: 18 January 2000  相似文献   
6.
TYLER  DAVID E. 《Biometrika》1987,74(3):579-589
  相似文献   
7.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   
8.
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
1.  The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).
2.  Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.
3.  The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).
4.  The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).
  相似文献   
9.
The temporal integration of the A1 auditory receptor of two species of noctuid moths (Lepidoptera, Noctuidae) was investigated. Tympanal nerve spikes were recorded while stimulating the ear with broad band clicks. Thresholds were measured for single clicks, pairs of clicks with a separation of 1–20 ms, and trains of up to 8 clicks at separations of 1–2 ms. The average threshold for single clicks was 52.9 dB peSPL (SD 1.7 dB, n = 40) for Noctua pronuba and 50.1 dB peSPL (SD 4.0 dB, n = 27) for Spodoptera littoralis. The thresholds for double clicks with a 1 ms separation were lower than the thresholds for single clicks. The difference decreased as the separation between the clicks was increased. The results were fully consistent with an energy detector model (a leaky integrator with an exponential decay) with a time constant of about 4 ms.The results are compared to previously published results with pure tone intensity/duration trading. A common underlying mechanism is suggested, based on the passive electric properties of the receptor cell membrane.It is suggested, that the time constant revealed in the present study characterizes auditory receptors in general, and is related to the short time constants in vertebrate audition.Abbreviations peSPL peak equivalent sound pressure level - SD standard deviation - time constant  相似文献   
10.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号