首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Planktonic Dinophysis spp. and epiphytic Prorocentrum lima (Ehrenberg) Dodge are known dinoflagellate producers of okadaic acid (OA) and dinophysistoxins (DTX), causative phycotoxins of diarrhetic shellfish poisoning (DSP). Underestimation of toxic dinoflagellates associated with a toxic event may be due to the lack of sampling of species with epiphytic and epibenthic strategies, such as P. lima. As Dinophysis spp. is not found in the Fleet Lagoon, Dorset, but previous DSP events have closed the Crassostrea gigas oyster farm, P. lima is the most likely causative organism. A field assay for separating microalgal epiphytes and concentrating wild cells on to filters was successfully applied to sub-samples of a variety of macroalgae and macrophytes (seagrass) collected from the Fleet during summer 2002. P. lima was present in increasing cell densities on most substratum species, over the sampling period, from 102 to 103 cells g−1 fresh weight (FW) plant biomass. LC–MS analysis detected OA and DTX-1 in extracts of wild P. lima cells, in ratios characteristic of P. lima strains previously isolated from the Fleet. No toxins, however, were detected in oyster flesh.  相似文献   
2.
The seasonal variation in diarrhetic shellfish poisoning (DSP)-type toxins was followed in the epibiotic community and in shellfish between 41° and 44°N in coastal waters of the northwest Atlantic during a 2-year period. Low levels of okadaic-acid equivalents were detected at all stations in the <90 μm fraction of the collected epibiota as measured by the protein phosphatase inhibition assay, but only 3.5% of the samples had values greater than 100 ng (g dry weight of epibiota)−1. No seasonal pattern could be detected due to differences in intensity, duration and timing of toxin content in the epibiota between the 2 years and between stations. Nevertheless, the concentration of DSP-type toxins in the epibiota correlated weakly but significantly with the abundance of Prorocentrum lima, when data from all stations were considered. A very limited toxin uptake by shellfish was measured at only one station in October and November 2001 and in June and July 2002 at times of maximum cell concentration of P. lima in the epibiota. Toxin levels in shellfish remained well below regulatory limits that would have required quarantine or bans on harvesting. Results from our 2-year survey suggest that, at this time, the threat of DSP events appears minimal. However, the presence of a known toxin producer and its demonstrated ingestion by shellfish would argue for further studies to better understand conditions leading to DSP outbreaks generated by an epiphytic dinoflagellate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号