首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2003年   2篇
  2001年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R1 and R1 measurements on the C1, C3, and C4 carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R1/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R1/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)–1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.  相似文献   
2.
The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3Jsub H3 P sub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of 10°, which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2-endo and C3-endo deoxyribose puckers (sugar switching). The C2-H2/H2 dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3-endo form higher for pyrimidines than for purines.  相似文献   
3.
The ratio of the internucleotide dipolar coupling and the corresponding one-bond imino 15N-1H dipolar coupling provides a measure for the N···H/H-N distance ratio. Measurements were carried out for a dodecamer, d(CGCGAATTCGCG)2, in which a C-G and an A-T basepair were uniformly enriched in 15N. When assuming H-bonds to be perfectly linear, dipolar data indicate time-averaged hydrogen bond lengths of 1.80±0.03 Å for A-T and 1.86±0.02 Å for C-G. When using H-bond orientations from high resolution X-ray data, H-bond lengths are about 0.1 Å shorter.  相似文献   
4.
The ratios of cross peak intensities in a selective constant-time NOESY experiment, recorded with and without 31P decoupling, yield values for the sum of the H3-P scalar and dipolar couplings. The selective refocusing of H3 resonances in this experiment results in excellent resolution and sensitivity, even in the liquid crystalline phase where the 1H spectrum is broadened by unresolved homonuclear dipolar couplings. The vicinal H3-P scalar and dipolar couplings in the DNA oligomer d(CGCGAATTCGCG)2 were measured in both isotropic solution, and in a liquid crystalline phase. Isotropic values are in good agreement with values reported previously. Dipolar couplings are in excellent agreement with the NMR structure for this dodecamer, and to a somewhat lesser extent with the X-ray structures.  相似文献   
5.
In this research, the interaction of Crocetin as an anti-cancer drug and a Dickerson DNA has been investigated. 25 ns molecular dynamic simulations of Crocetin and DNA composed of 12 base pairs and a sequence of d(CGCGAATTCGCG)2 were done in water. Three definite parts of the B-DNA were considered in analyzing the best interactive site from the thermodynamic point of view. Binding energy analysis showed that van der Waals interaction is the most important part related to the reciprocal O and H atoms of the Crocetin and DNA. Stabilizing interactions, obtained by ΔG calculations, showed that maximum and minimum interactions are related to the S1 and S3 regions, respectively. This means that the most probable van der Waals interaction site of the Dickerson B-DNA and Crocetin is located in the minor groove of DNA. Two sharp peaks at 2.55 and 1.75 Å in radial distribution functions of the PO?HO and NH?OC parts are related to new hydrogen bonds between the Crocetin and DNA in the complex which can be considered as the driving force of the anti-cancer mechanism of the Crocetin. Average values of 0.3 au and zero for the electron densities of the H?O bonds for DNA and complex, obtained by Quantum theory of atoms in molecules (QTAIM), means that the origin of DNA instability after complexation may be related to the H-bond denaturation by Crocetin. Finally, the evaluation of the dispersion interactions using the dispersion functional, -148.76 kcal.mol?1, confirmed the importance of the dispersion interaction in drug-DNA complex.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号