首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
  国内免费   6篇
  2023年   3篇
  2022年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  1993年   1篇
  1990年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
Summary Five different soils varying in physico-chemical properties were used for studying the persistence and degradation of carboxin and oxycarboxin. In one soil only both fungicides were degraded with accumulation of ammonium and nitrite. Under the conditions of forced circulation of air and continuous perfusion, oxycarboxin was found to be more susceptible to degradation than carboxin. Under simulated conditions of rice fields, conversion of carboxin to its sulphoxide and to a non-toxic derivative of oxycarboxin could only be seen in all the soils.The role of clay, humus and organic matter as protectants of fungicides against degradation indicated that the intermediary compound carboxin sulphoxide was strongly adsorbed probably on organic and inorganic colloids of most of the soils. Organic matter free soils delayed the degradation. Carboxin was rapidly converted to its sulphoxide on three forms of monoionic clays whereas oxycarboxin was transformed to an unidentified derivative.Part of Ph.D. thesis submitted to UAS, Bangalore-65.  相似文献   
2.
Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.  相似文献   
3.
Zeolites are able to adsorb proteins on their surface and might be suitable as a new type of chromatographic carrier material for proteins and for their conjugates (Matsui et al., Chem. Eur. J. 7 (2001) 1555-1560). Interestingly, maximum adsorption was observed at the isoelectric point (pI) of each protein. The current study was performed to investigate the desorption of proteins from the zeolites at pI. Proteins adsorbed to zeolites could be desorbed at pI by polyethylene glycol (PEG), but not by conventional eluents. The eluted proteins still retained their activities. The zeolite Na-BEA was an especially good composite for desorption by PEG. Using this method for the adsorption and desorption of proteins at pI, we succeeded in separating various proteins. The application of zeolites to biochemistry and biotechnology is also discussed.  相似文献   
4.
We have investigated the effects of low molecular weight organic acid ligands on the adsorption of the insecticidal toxin from Bacillus thuringiensis (Bt) by the colloidal (<2 μm particle-size) fraction of some soils. The desorption of the bound toxin by NaCl and phosphate buffer has also been measured. The soils used were a red soil (Ultisol), a latosol (Oxisol), a yellow brown soil (Alfisol) and a yellow cinnamon soil (Alfisol) from central and southern China. The adsorption isotherms were all of the L-type, and the data fitted the Langmuir equation (R2 > 0.97). When present at low concentrations, organic acids (acetate, oxalate, citrate) had an inhibitory effect on toxin adsorption. Uptake, however, was promoted when the organic acid concentration exceeded 10 mM. The toxin was very strongly bound by the soils but the soil-toxin interaction weakened in the presence of organic acids. A small portion of the toxin was adsorbed by electrostatic and ligand exchange interactions. The addition of organic acids appeared to enhance these interactions. Responsible Editor: Thomas B. Kinraide  相似文献   
5.
The submerged aquatic plant Myriophyllum spicatum L. (Eurasian water milfoil) has been suggested as an efficient plant species for the treatment of metal-contaminated industrial wastewater. The process of metal removal by plants involves a combination of rapid sorption on the surface and slow accumulation and translocation in the biomass. This study focussed on the sorption/desorption characteristics of the surface of M. spicatum for Co, Cu, Ni and Zn. Batch sorption tests with mixed metal solutions covering a range of 0, 1, 5, 10, 50 and 100 mg l−1 of each metal, were performed. For Co, Ni and Zn, the sorption process was well described by the Langmuir model, whereas sorption of Cu was better described by the Freundlich model. The biomass showed the highest affinity for Cu and Zn. Langmuir sorption maxima of Co, Ni and Zn were 2.3, 3.0 and 6.8 mg g−1 DM, respectively. At the highest initial concentration of 100 mg l−1, a maximum of 29 mg g−1 DM of Cu was sorbed onto the surface of the biomass. Desorption by 0.1 M HCl did not fully recover the metals sorbed onto the surface and there was evidence of leaching from within the biomass. Recovery of heavy metals and regeneration of the biomass by washing with 0.1 M HCl was therefore not suggested as a viable strategy.  相似文献   
6.
Desorption electrospray ionization may be used as a fast and convenient method for analysis and identification of lipids in the cell culture. Oxidative stress, which usually involves changes in lipids, was used as a model of pathology to show the utility of this analysis methodology. This paper addresses the surface preparation of cell culture slides, induction of oxidative stress, and cell monolayer culture preparation as well as optimization of the analysis. Advantages and drawbacks of the method were also discussed.  相似文献   
7.
8.
Constructed wetland systems built to handle nutrient contaminants are often efficient at removing nitrogen, but ineffective at reducing phosphorus (P) loads. Incorporating a clay-based substrate can enhance P removal in subsurface-flow constructed wetland systems. We evaluated the potential of crushed brick, a recycled building product, and two particle sizes of a palygorskite–bentonite industrial mineral aggregate (calcined clay) to sorb P from simulated nutrient-rich plant nursery effluent. The three substrates were screened for P sorbing behavior using sorption, desorption, and equilibration experiments. We selected one substrate to evaluate in an 8-month field trial to compare field sorption capacity with laboratory sorption capacity. In the laboratory, coarse calcined clay average sorption capacity was 497 mg kg−1 and it sorbed the highest percentage of P supplied (76%), except at exposure concentrations >100 mg L−1 where the increased surface area of fine calcined clay augmented its P sorption capacity. Subsurface-flow mesocosms were filled with coarse calcined clay and exposed to a four and seven day hydraulic retention time treatment. Phosphorus export was reduced by 60 to 74% for both treatments until substrate P-binding sites began to saturate during month seven. During the eight month experiment, the four and seven day treatments fixed 1273 ± 22 mg kg−1 P and 937 ± 16 mg kg−1 P, respectively. Sequential extractions of the P saturated clay indicated that P could desorb slowly over time from various pools within the calcined clay; thus, if the calcined clay were recycled as a soil amendment, most P released would be slowly available for plant uptake and use. This study demonstrated the viability of using coarse calcined clay as a root bed substrate in subsurface-flow treatment wetlands remediating phosphorus from plant nursery runoff.  相似文献   
9.
Characterising the protein signatures in tumours following vascular-targeted therapy will help determine both treatment response and resistance mechanisms. Here, mass spectrometry imaging and MS/MS with and without ion mobility separation have been used for this purpose in a mouse fibrosarcoma model following treatment with the tubulin-binding tumour vascular disrupting agent, combretastatin A-4-phosphate (CA-4-P). Characterisation of peptides after in situ tissue tryptic digestion was carried out using Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) and Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Mass Spectrometry Imaging (MALDI IMS-MSI) to observe the spatial distribution of peptides. Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Tandem Mass Spectrometry (MALDI-IMS-MS/MS) of peaks was performed to elucidate any pharmacological responses and potential biomarkers. By taking tumour samples at a number of time points after treatment gross changes in the tissue were indicated by changes in the signal levels of certain peptides. These were identified as arising from haemoglobin and indicated the disruption of the tumour vasculature. It was hoped that the use of PCA-DA would reveal more subtle changes taking place in the tumour samples however these are masked by the dominance of the changes in the haemoglobin signals.  相似文献   
10.
Saposin C (Sap C) is known to stimulate the catalytic activity of the lysosomal enzyme glucosylceramidase (GCase) that facilitates the hydrolysis of glucosylceramide to ceramide and glucose. Both Sap C and acidic phospholipids are required for full activity of GCase. In order to better understand this interaction, mixed bilayer samples prepared from dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylserine (DOPS) (5:3 ratio) and Sap C were investigated using 2H and 31P solid-state NMR spectroscopy at temperatures ranging from 25 to 50 °C at pH 4.7. The Sap C concentrations used to carry out these experiments were 0 mol%, 1 mol% and 3 mol% with respect to the phospholipids. The molecular order parameters (SCD) were calculated from the dePaked 2H solid-state NMR spectra of Distearoyl-d70-phosphatidylglycerol (DSPG-d70) incorporated with DOPG and DOPS binary mixed bilayers. The SCD profiles indicate that the addition of Sap C to the negatively charged phospholipids is concentration dependent. SCD profiles of 1 mol% of the Sap C protein show only a very slight decrease in the acyl chain order. However, the SCD profiles of the 3 mol% of Sap C protein indicate that the interaction is predominantly increasing the disorder in the first half of the acyl chain near the head group (C1-C8) indicating that the amino and the carboxyl termini of Sap C are not inserting deep into the DOPG and DOPS mixed bilayers. The 31P solid-state NMR spectra show that the chemical shift anisotropy (CSA) for both phospholipids decrease and the spectral broadening increases upon addition of Sap C to the mixed bilayers. The data indicate that Sap C interacts similarly with the head groups of both acidic phospholipids and that Sap C has no preference to DOPS over DOPG. Moreover, our solid-state NMR spectroscopic data agree with the structural model previously proposed in the literature [X. Qi, G.A. Grabowski, Differential membrane interactions of saposins A and C. Implication for the functional specificity, J. Biol. Chem. 276 (2001) 27010-27017] [1].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号