首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   29篇
  国内免费   9篇
  2023年   4篇
  2022年   7篇
  2021年   17篇
  2020年   10篇
  2019年   20篇
  2018年   19篇
  2017年   7篇
  2016年   10篇
  2015年   33篇
  2014年   78篇
  2013年   47篇
  2012年   51篇
  2011年   84篇
  2010年   70篇
  2009年   67篇
  2008年   77篇
  2007年   87篇
  2006年   78篇
  2005年   52篇
  2004年   60篇
  2003年   33篇
  2002年   14篇
  2001年   13篇
  2000年   7篇
  1999年   10篇
  1998年   15篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1975年   2篇
  1971年   1篇
排序方式: 共有1037条查询结果,搜索用时 31 毫秒
1.
A re-evaluation of the cytology of cat Pacinian corpuscles   总被引:1,自引:0,他引:1  
Summary The ultrastructure of cat mesenteric Pacinian corpuscles in cross and longitudinal sections has been examined. The terminal ends of lamellar cells of the inner core have been identified in longitudinal sections through the proximal portion of the inner core. These terminal bulbous expansions contain characteristic concentric membranes of rough endoplasmic reticulum and in some cases masses of oval membranous inclusions. The central axon as seen in cross section is oval in profile, having X-(short) and Y-(long) axes, and each axonal face is characterized by specializations of the axolemma. At the X-axis, the inner lamellae of the inner core tightly abut a smooth axolemma, with no intervening connective tissue matrix, in a manner reminiscent of a neuroepithelium. The axolemma of the Y-axis has numerous axonal spines (microspikes) that project into the cleft in the inner core. The extent of the axolemma having axonal spines can only be appreciated in longitudinal sections. The clefts contain a specialized connective tissue with elastic and collagen fibrils. The connective tissue compartment of fibers and matrix separating individual inner core lamellae is unique, in that it contains extremely thin collagen fibrils measuring approximately 15 nm in diameter. The diameter of collagen fibrils increases as the cleft is approached. Here the fibrils resemble typical endoneural collagen.  相似文献   
2.
Summary The aim of the present study was to analyze the nature of lymphoid and non-lymphoid cellular components occurring in distinct histological compartments of the splenic white pulp of the turtle, Mauremys caspica, in order to define their possible correlations with those of the spleen of higher vertebrates, principally mammals. The white pulp of M.caspica consisted of 3 clearly distinguishable regions: (1) the periateriolar lymphoid sheath, and (2) the inner and (3) the outer zones of the periellipsoidal lymphoid sheath. Reticular cells intimately associated with reticular fibres constituted an extensive meshwork in the periarteriolar lymphoid sheath which housed principally Ig-negative lyphoid cells, mature and immature plasma cells, and interdigitating cells. A few Ig-positive cells were also present in the peripheral region of the periarteriolar lymphoid sheath. The inner and outer zones of the periellipsoidal lymphoid sheath were separated by a discontinuous layer of reticular cell processes. In the inner zone, surface Ig-positive lymphoid cells predominated as well as dendritic cells, resembling ultrastructurally the mammalian follicular dendritic cells, although no germinal centres were found in the turtle spleen. Macrophages, some cytoplasmic Ig-positive cells, and Ig-negative lymphoid cells appeared in the outer zone of the periellipsoidal lymphoid sheath. These results allow us to speculate on a phylogenetic relationship between the periarteriolar lymphoid sheath and the inner and the outer zones of the periellipsoidal lymphoid sheath of the spleen of M. caspica and the periarteriolar lymphoid tissue, the lymphoid follicles and the marginal zone, respectively, of the mammalian splenic white pulp.  相似文献   
3.
用6、12与31个月的雄性Wistar大鼠的大脑Krieg 2、3区皮质,对其V层大锥体细胞的五段50μm长度内的树突棘做形态学定量研究。在Golgi法的切片中共计数了三个年龄组的151个细胞的725段树突的棘密度。结果表明,老年大鼠比成年和青年大鼠的棘密度普遍下降。其中以基树突与侧树突棘度下降最显著(减少24%左右),顶树突只中段有明显减少。老年大鼠锥体细胞还常出现胞体、树突及其分支的明显形态改变。  相似文献   
4.
We investigated the development of spiny neurons in the lateral magnocellular nucleus of the anterior neostriatum before, during, and after song learning in male zebra finches (Taeniopygia guttata). The frequency of dendritic spines, dendritic field size, and branching characteristics were quantified at different ages in Golgi-stained tissue using a three-dimensional computerized tracing system. During development, overall spine frequencies increase between 3 and 5 weeks and decrease thereafter. In particular, spine frequencies of middle segments decrease significantly by 14% between 5 and 7 weeks posthatching (p = 0.017). A further reduction of 48% occurs between 7 weeks and adulthood (p < 0.001), resulting in a spine reduction of 56% on middle segments between 35 days of age and adulthood. In addition to the reduction of spine frequencies, we find regressive events also on some of the neuronal parameters that we have quantified. In general, dendrites of adult animals terminate closer to the cell body than those of 7-, 5-, or 3-week-old birds. Whereas no changes in segment length of first- and second-order dendrites have been identified, third-order dendrites end 19% closer to the cell body in adults than in younger birds (p < 0.024). Second-order dendrites in adult animals branch less frequently than in 3-week-old animals (35%, p = 0.017). There is also a trend of a smaller number of tertiary branches in adulthood compared with 3-week-old birds (41%, p = 0.060). The morphological changes may be related to the function of this nucleus and the sensitive phase for song acquisition. © 1995 John Wiley & Sons, Inc.  相似文献   
5.
Abstract: Ganglioside analysis and quantitative Golgi studies of the cerebral cortex of cats with ganglioside and nonganglioside lysosomal storage diseases reveal a correlation between the amount of accumulated GM2 ganglioside and the extent of ectopic dendrite growth on cortical pyramidal neurons. This correlation was not observed with any of the other gangliosides assayed for, including GM1 ganglioside. These results suggest a specific role for GM2 ganglioside in the initiation of ectopic neurites on pyramidal cells in vivo and are consistent with the developing hypothesis that different gangliosides have specific roles in different cell types dependent upon the receptor or other effector molecules with which they may interact.  相似文献   
6.
This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.  相似文献   
7.
The organophosphatic shell of siphonotretide brachiopods is stratiform with orthodoxly secreted primary and secondary layers. The dominant apatitic constituents of the secondary layer are prismatic laths and rods arranged in monolayers (occasionally in cross-bladed successions), normally recrystallized as platy laminae. Sporadically distributed, interlaminar, lenticular chambers, containing apatitic meshes of laths and aggregates of plates and spherulites, probably represent degraded, localized exudations of glycosaminoglycans (GAGs) with dispersed apatite.
The shells of Helmersenia and Gorchakovia are perforated by canals with external depressions (antechambers) that possibly contained chitinous tubercles in vivo . The immature shell of Siphonotreta and most other siphonotretids is similarly perforated and pitted; but the mature part bears recumbent, rheomorphic, hollow spines that grew forward out of pits. Internally, spines pierce the shell as independent structures to terminate as pillars in GAGs chambers. Spines and pillars were probably secreted by collectives of specialized cells (acanthoblasts) within the mantle.
The shell of the oldest siphonotretide, Schizambon , is imperforate but the ventral valve has a pedicle foramen that lies forward of the posterior margin of the juvenile valve. This relationship characterizes all siphonotretides, suggesting that the pedicle, in vivo , originated within the ventral outer epithelium and not from the posterior body wall as in lingulides.  相似文献   
8.
We built a passive compartmental model of a cortical spiny stellate cell from the barrel cortex of the mouse that had been reconstructed in its entirety from electron microscopic analysis of serial thin sections (White and Rock, 1980). Morphological data included dimensions of soma and all five dendrites, neck lengths and head diameters of all 380 spines (a uniform neck diameter of 0.1 m was assumed), locations of all symmetrical and asymmetrical (axo-spinous) synapses, and locations of all 43 thalamocortical (TC) synapses (as identified from the consequences of a prior thalamic lesion). In the model, unitary excitatory synaptic inputs had a peak conductance change of 0.5 nS at 0.2 msec; conclusions were robust over a wide range of assumed passive-membrane parameters. When recorded at the soma, all unitary EPSPs, which were initiated at the spine heads, were relatively iso-efficient; each produced about 1 mV somatic depolarization regardless of spine location or geometry. However, in the spine heads there was a twentyfold variation in EPSP amplitudes, largely reflecting the variation in spine neck lengths. Synchronous activation of the TC synapses produced a somatic depolarization probably sufficient to fire the neuron; doubling or halving the TC spine neck diameters had only minimal effect on the amplitude of the composite TC-EPSP. As have others, we also conclude that from a somato-centric viewpoint, changes in spine geometry would have relatively little direct influence on amplitudes of EPSPs recorded at the soma, especially for a distributed, synchronously activated input such as the TC pathway. However, consideration of the detailed morphology of an entire neuron indicates that, from a dendro-centric point of view, changes in spine dimension can have a very significant electrical impact on local processing near the sites of input.  相似文献   
9.
Summary Using techniques for enhanced microtubular preservation, including albumin pretreatment (Gray, 1975), occipital cortex of rats was studied electron microscopically at various ages of development. A close structural relationship was seen between microtubules, sacs of SER and the postsynaptic thickening in primordial spines and with the dense plate material of spine apparatuses. Stereoscopic preparations in addition show a more complicated substructure than previously described for the plate. Microtubules may contribute to the formation of the plate of the spine apparatus which in turn is associated with the postsynaptic thickening of the mature spine. Possible functional correlates are discussed.Dr. L.E. Westrum is an affiliate of the CDMRC at the University of Washington and a recipient of a Burroughs-Wellcome (USA) — Wellcome Trust (U.K.) Research Travel Grant. The research was also supported in part by NIH Grants NS 09678, NS 04053 (NINCDS) and DE 04942 (NIDR), DHHS  相似文献   
10.
Synopsis Ages determined by counts of apparent annuli on scales, sagittae, vertebrae, pectoral fin ray and dorsal fin spine cross sections of largemouth bass from northern populations, which are older and slower growing fish than in the southern parts of its native range, were compared to establish the accuracy of each method. Linear regression techniques indicated strong agreement (r> 0.9) among ages assigned from the examination of scales, sagittae, and vertebrae. The pattern of growth zones on pectoral fin ray and dorsal fm spine cross sections proved too variable for accurate age determination. Limited data suggest that ages greater than 7+ assigned from scales were more likely to underestimate true ages than the other body parts used, although none of these methods gave satisfactory results. Examination of scales from recovered tagged fish, and the similarity between back-calculated lengths of fish through age 7+ to annulus I and observed lengths of juvenile largemouth bass near the end of their first growing season, support the validity of ages determined from scales. Despite a very limited amount of habitat suitable for largemouth bass and severe climatic conditions, growth of this species in Tadenac Lake was similar to growth in other waters north of the Great Lakes. Differences in physical characteristics among these waters does not appear to influence growth rates of largemouth bass, but probably affects production and biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号