首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
  国内免费   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   4篇
  2009年   9篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
1.
Abstract: Ganglioside analysis and quantitative Golgi studies of the cerebral cortex of cats with ganglioside and nonganglioside lysosomal storage diseases reveal a correlation between the amount of accumulated GM2 ganglioside and the extent of ectopic dendrite growth on cortical pyramidal neurons. This correlation was not observed with any of the other gangliosides assayed for, including GM1 ganglioside. These results suggest a specific role for GM2 ganglioside in the initiation of ectopic neurites on pyramidal cells in vivo and are consistent with the developing hypothesis that different gangliosides have specific roles in different cell types dependent upon the receptor or other effector molecules with which they may interact.  相似文献   
2.
The high-molecular-weight dendritic cytoskeletal protein known as microtubule-associated protein (MAP)-2 displays the capacity to stimulate tubulin polymerization and to associate with microtubules. Serine proteases cleave MAP-2 into a C-terminal M(r) 28,000-35,000 microtubule-binding fragment and a larger N-terminal M(r) 240,000 projection-arm region. We now show that human immunodeficiency virus (HIV) proteinase also progressively degrades purified MAP-2 in vitro. This proteolysis reaction is characterized by transient accumulation of at least six intermediates, and most abundant of these is an M(r) 72,000 species that retains the ability to associate with taxol-stabilized microtubules. Treatment of this M(r) 72,000 species with thrombin releases the same M(r) 28,000 component as that derived from thrombin action on intact high-molecular-weight MAP-2, indicating that the viral aspartoproteinase action preferentially occurs further toward the N-terminus. The association of the M(r) 72,000 component with microtubules can be disrupted by the presence of a 21-amino acid peptide analogue of the second repeated sequence in the MAP-2 microtubule-binding region. We also studied HIV proteinase action on MAP-2 in the presence of tubulin and other MAPs that recycle with tubulin, and contrary to other published studies we found no effect of such treatment on microtubule self-assembly behavior. Cleavage of isolated MAP-2 by the HIV enzyme at high salt concentrations, followed by desalting and addition of tubulin, also resulted in microtubule assembly, albeit with slightly reduced efficiency.  相似文献   
3.
A study of the negative phase of the spikes recorded extra cellularly from insect mechanoreceptor has been performed in order to characterize some electrical properties of the dendrite which contains the transducing part of the sensory neuron. These properties have been investigated in mechanoreceptors of the metathoracic leg of the locust Schistocerca gregaria by firing antidromic action potentials both at rest and during mechanical or electrical stimulation. The amplitude of the negative phase of the spike appears to be correlated with the polarization of the dendritic membrane, although when bursts of action potentials are applied, the relation is more complex, including a depressive influence of a given spike on the following spike. The receptor potential and the antidromic dendritic spikes both originate in the same region of the dendrite but they involve different ionic processes. Our results indicate that the dendrite is electrically excitable. The spike which originates in the dendrite has an initial negative phase with a small superimposed positive component. A spike of this shape is never observed under natural stimulation. It is proposed that the negative phase of the antidromic impulse provides a suitable means for studying the variations in electrical polarization of the dendrite which cannot be recorded directly.  相似文献   
4.
Prostaglandins are lipid signaling intermediates released by keratinocytes in response to ultraviolet irradiation (UVR) in the skin. The main prostaglandin released following UVR is PGE(2), a ligand for 4 related G-protein-coupled receptors (EP(1), EP(2), EP(3) and EP(4)). Our previous work established that PGE(2) stimulates melanocyte dendrite formation through activation of the EP(1) and EP(3) receptors. The purpose of the present report is to define the signaling intermediates involved in EP(1)- and EP(3)-dependent dendrite formation in human melanocytes. We recently showed that activation of the atypical PKCzeta isoform stimulates melanocyte dendricity in response to treatment with lysophosphatidylcholine. We therefore examined the potential contribution of PKCzeta activation on EP(1)- and EP(3)-dependent dendrite formation in melanocytes. Stimulation of the EP(1) and EP(3) receptors by selective agonists activated PKCzeta, and inhibition of PKCzeta activation abrogated EP(1)- and EP(3)-receptor-mediated melanocyte dendricity. Because of the importance of Rho-GTP binding proteins in the regulation of melanocyte dendricity, we also examined the effect of EP(1) and EP(3) receptor activation on Rac and Rho activity. Neither Rac nor Rho was activated upon treatment with EP(1,3)-receptor agonists. We show that melanocytes express only the EP(3A1) isoform, but not the EP(3B) receptor isoform, previously associated with Rho activation, consistent with a lack of Rho stimulation by EP(3) agonists. Our data suggest that PKCzeta activation plays a predominant role in regulation of PGE(2)-dependent melanocyte dendricity.  相似文献   
5.
Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.  相似文献   
6.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   
7.
Actin cytoskeletal remodeling plays a critical role in transforming the morphology of subcellular structures across various cell types. In the brain, restructuring of dendritic spines through actin cytoskeleletal reorganization is implicated in the regulation of synaptic efficacy and the storage of information in neural circuits. However, the upstream pathways that provoke actin-based spine changes remain only partly understood. Here we show that EphA receptor signaling remodels spines by triggering a sequence of events involving actin filament rearrangement and synapse/spine reorganization. Rapid EphA signaling over minutes activates the actin filament depolymerizing/severing factor cofilin, alters F-actin distribution in spines, and causes transient spine elongation through the phosphatases slingshot 1 (SSH1) and calcineurin/protein phosphatase 2B (PP2B). This early phase of spine extension is followed by synaptic reorganization events that take place over minutes to hours and involve the relocation of pre/postsynaptic components and ultimately spine retraction. Thus, EphA receptors utilize discrete cellular and molecular pathways to promote actin-based structural plasticity of excitatory synapses.  相似文献   
8.
To begin the process of forming neural circuits, new neurons first establish their polarity and extend their axon. Axon extension is guided and regulated by highly coordinated cytoskeletal dynamics. Here we demonstrate that in hippocampal neurons, the actin-binding protein caldesmon accumulates in distal axons, and its N-terminal interaction with myosin II enhances axon extension. In cortical neural progenitor cells, caldesmon knockdown suppresses axon extension and neuronal polarity. These results indicate that caldesmon is an important regulator of axon development.  相似文献   
9.
10.
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号