首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Directional modifications of resibufogenin 1 by Mucor subtilissimus and Pseudomonas aeruginosa were carried out. The substrate was hydroxylated at C-12 by M. subtilissimus AS 3.2454, from which a major product 12-hydroxyresibufogenin 2 was obtained. Then product 2 was dehydrogenated by P. aeruginosa AS 1.860, which resulted in a new compound 12β-hydroxy-3-keto-resibufogenin 3.  相似文献   
2.
Flavanone (1) and 6-hydroxyflavanone (2) were subjected to transformation by means of Aspergillus niger strains (one wild and three UV mutants). For both substrates the biotransformation resulted in reduction of the carbonyl group (products 5 and 7) and dehydrogenation at C-2 and C-3 (3 and 8). Additionally, for flavanone (1) reduction of C-4 together with hydroxylation at C-7 (6) and dehydrogenation at C-2, C-3 along with hydroxylation at C-3 (4) were observed.  相似文献   
3.
The iridium cyclooctadiene complex incorporating a tricyclopentyl phosphine ligand (PCyp3), Ir(η22-C8H12)(PCyp3)Cl, has been prepared. Removal of the chloride from this complex using in CH2Cl2/arene solvent results in dehydrogenation (C-H activation followed by β-H transfer) of one of the alkyl phosphine rings and formation of the complexes (X = H, F) which contain a hybrid phosphine-alkene ligand. These complexes are formed alongside another product (5-20% yield) that has been identified as , which can be prepared in high yield by an alternative, and slightly modified, route. This complex is with a minor isomer that has been tentatively identified as , which results from allylic C-H activation of cyclooctadiene. Addition of H2 to and its isomer in arene solvent (C6H5X, X = F, H) forms the dihydrido η6-arene Ir(III) complexes . In contrast, hydrogenation in CH2Cl2 alone results in the formation of in which the anion is now acting as a ligand through one of its aryl rings. The fluorobenzene complex can be cleanly converted to by addition of the hydrogen acceptor tert-butylethene (tbe).  相似文献   
4.
We have previously demonstrated that 2H distribution in fatty acids is non-statistical and can be related to isotopic discrimination during chain extension and desaturation. Petroselinic acid (C18:1 Delta(6)), a fatty acid characteristic of the seeds of the Apiaceae, has been shown to be biosynthesised from palmitoyl-ACP (C16:0) by two steps, catalysed by a dedicated Delta(4)-desaturase and an elongase. We have now demonstrated that the isotopic profile resulting from this pathway is similar to that of the classical plant fatty acid pathway but that the isotopic fingerprint from both the desaturase and elongase steps show important differences relative to oleic and linoleic acid biosynthesis.  相似文献   
5.
In the present work, dehydrogenation of 2-substituted imidazolines with sodium periodate in the presence of tetraphenylporphyrinatomanganese(III) chloride, [Mn(TPP)Cl], is reported. A wide variety of 2-imidazolines efficiently converted to their corresponding imidazoles by [Mn(TPP)Cl]/NaIO4 catalytic system at room temperature in 1:2, CH3CN/H2O mixture. The effect of reaction parameters such as kind of solvent and catalyst amount was also investigated.  相似文献   
6.
Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these species, the isolate was devoid of alpha-galactosidase and -glucosidase and did not grow on maltose, melibiose, raffinose, rhamnose and trehalose. The hypothesis that strain SDG-Mt85-3Db represents a new bacterial species of the Clostridium cluster XVIII was confirmed by DNA-DNA hybridisation experiments. The G+C content of DNA of strain SDG-Mt85-3Db (30.7+/-0.8 mol%) was comparable with that of Clostridium butyricum, the type species of the genus Clostridium. The name Clostridium saccharogumia is proposed for strain SDG-Mt85-3Db (=DSM 17460T=CCUG 51486T). The second isolate, strain ED-Mt61/PYG-s6, was a mesophilic strictly anaerobic Gram-positive regular rod. Based on 16S rRNA gene sequence analysis, its nearest relatives were Clostridium amygdalinum (93.3%), Clostridium saccharolyticum (93.1%) and Ruminococcus productus (93.0%). The isolate differed from these species in its ability to dehydrogenate enterodiol. It also possessed alpha-arabinosidase and -galactosidase and had a higher G+C content of DNA (48.0 mol%). According to these findings, it is proposed to create a novel genus, Lactonifactor, and a novel species, Lactonifactor longoviformis, to accommodate strain ED-Mt61/PYG-s6. The type strain is DSM 17459T (=CCUG 51487T).  相似文献   
7.
The degradation metabolism of cytokinins is an important process that controls the levels of cytokinin active forms and their distribution in plant tissues. It appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This review attempts to collate the limited information available about this enzyme and introduce new facts, obtained in our laboratory, concerning the mechanism of degradation of cytokinins bearing unsaturated isoprene side chains. However, complete clarification of the effects of cytokinin oxidase on cytokinin regulation and its molecular and biochemical properties will be dependent upon the purification of the protein with cytokinin oxidase activity to homogeneity and progress in the development of requisite molecular probes.  相似文献   
8.
A combination of neopentyl-substituted PNP-iridium complex 2 and NaH could catalyze dimerization of alkylamines to form dialkylamines with the highest activity ever reported. Primary and secondary alkylamines were applicable to the present catalytic reaction. Several mechanistic studies suggested a plausible catalytic cycle. The high activity of catalyst 2 may come from the role of neopentyl groups to make a space around the metal center.  相似文献   
9.
The objective of this study was to assess the influence of the peroxidase/coniferyl alcohol (CA) ratio on the dehydrogenation polymer (DHP) synthesis. The soluble and unsoluble fractions of horseradish peroxidase (HRP)-catalyzed CA dehydrogenation mixtures were recovered in various proportions, depending on the polymerization mode (Zutropf ZT/Zulauf ZL) and HRP/CA ratio (1.6-1100purpurogallin U mmol(-1)). The ZL mode yielded 0-57%/initial CA of unsoluble condensed DHPs (thioacidolysis yields <200micromolg(-1)) with a proportion of uncondensed CA end groups increasing with the HRP/CA ratio (7.2-55.5%/total uncondensed CA). Systematically lower polymer yields (0-49%/initial CA) were obtained for the ZT mode. In that mode, a negative correlation was established between the beta-O-4 content (thioacidolysis yields: 222-660micromolg(-1)) and the HRP/CA ratio. In both modes, decreasing the HRP/CA ratio below 18Ummol(-1) favoured an end-wise polymerization process evidenced by the occurrence of tri-, tetra- and pentamers involving at least one beta-O-4 bond. At low ratio, the unsoluble ZT DHP was found to better approximate natural lignins than DHPs previously synthesized with traditional methods. Besides its possible implication in lignin biosynthesis, peroxidase activity is a crucial parameter accounting for the structural variations of in vitro DHPs.  相似文献   
10.
Biotransformation of 20(S)-protopanaxadiol (1) by the fungus Mucor spinosus AS 3.3450 yielded eight metabolites (29). On the basis of NMR and MS analyses, the metabolites were identified as 12-oxo-15α,27-dihydroxyl-20(S)-protopanaxadiol (2), 12-oxo-7β,11α,28-trihydroxyl-20(S)-protopanaxadiol (3), 12-oxo-7β,28-dihydroxyl-20(S)-protopanaxadiol (4), 12-oxo-15α,29-dihydroxyl-20(S)-protopanaxadiol (5), 12-oxo-7β,15α-dihydroxyl-20(S)-protopanaxadiol (6), 12-oxo-7β,11β-dihydroxyl-20(S)-protopanaxadiol (7), 12-oxo-15α-hydroxyl-20(S)-protopanaxadiol (8), and 12-oxo-7β-hydroxyl-20(S)-protopanaxadiol (9), respectively. Among them, 25, 7, and 8 are new compounds. These results indicated that M. spinosus could catalyze the specific C-12 dehydrogenation of 20(S)-protopanaxadiol, as well hydroxylation at different positions. These biocatalytic reactions may be difficult for chemical synthesis. The biotransformed products showed weak in vitro cytotoxic activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号