首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   3篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
  2009年   1篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Verapamil is used clinically as a Ca2+ channel inhibitor for the treatment of various disorders such as angina, hypertension and cardiac arrhythmia. Here we study the effect of verapamil on the bacterium Escherichia coli. The drug was shown to inhibit cell division at growth sub inhibitory concentrations, independently of the SOS response. We show verapamil is a membrane active drug, with similar effects to dibucaine, a local anesthetic. Thus, both verapamil and dibucaine abolish the proton motive force and decrease the intracellular ATP concentration. This is accompanied by induction of degP expression, as a result of the activation of the RpoE (SigmaE) extra-cytoplasmic stress response, and activation of the psp operon. Such effects of verapamil, as a membrane active compound, could explain its general toxicity in eukaryotic cells.  相似文献   
2.
More than one fifth of the proteins encoded by the genome of Escherichia coli are destined to the bacterial cell envelope. Over the past 20 years, the mechanisms by which envelope proteins reach their three-dimensional structure have been intensively studied, leading to the discovery of an intricate network of periplasmic folding helpers whose members have distinct but complementary roles. For instance, the correct assembly of ß-barrel proteins containing disulfide bonds depends both on chaperones like SurA and Skp for transport across the periplasm and on protein folding catalysts like DsbA and DsbC for disulfide bond formation. In this review, we provide an overview of the current knowledge about the complex network of protein folding helpers present in the periplasm of E. coli and highlight the questions that remain unsolved. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   
3.
膜间质蛋白酶(DegP),是一种广泛存在于真核生物和原核生物细胞中的蛋白。DegP同时具有酶活性和分子伴侣活性,并通过多聚体构成胶囊状结构执行其分子伴侣功能。DegP的酶活性依赖酶切位点与PDZ1结构域双重识别方式识别底物,这种识别模式被称为"分子量尺"。在革兰氏阴性菌中,DegP主要位于膜间质,通过分子伴侣活性与酶活性帮助保护错误折叠蛋白或降解变性蛋白。DegP也参与外膜蛋白的转运,是DegP胞内活性的研究重点。DegP也可以被分泌到胞外,帮助宿主对抗恶劣环境,并参与调节生物被膜的形成。本文将从DegP的结构与活性、胞内功能与胞外功能三大方面对DegP的研究进展进行总结,为革兰氏阴性菌周质中蛋白质质量控制与DegP体外功能的进一步研究提供参考。  相似文献   
4.
Role of DegP protease on levels of various forms of colicin A lysis protein   总被引:2,自引:0,他引:2  
Abstract The total amount of the colicin A lysis protein produced by cells grown in rich medium was analysed by immunoblotting. The intermediate forms of synthesis of this small lipoprotein were present in the cells at any time of induction, confirming that processing and maturation of colicin A lysis protein are slow and incomplete processes. The level of these various forms varied according to the time of induction, the growth conditions, the producing strain and the plasmid carrying the cal gene. It depended mainly on the presence in the producing strain of a degP gene which encodes the DegP protease. According to growth conditions, the DegP protease hydrolysed either a part or the total amount of the acylated precursor form. In some cases, a protease(s) other than DegP seemed to act on either form(s) of the colicin A lysis protein.  相似文献   
5.
具有分子伴侣和蛋白酶双重活性的大肠杆菌DegP蛋白,在热休克和其他应激条件下,对于降解和清除膜间质中变性或损伤的蛋白质起着十分重要的作用.到目前为止,已有几种蛋白质被鉴定出是DegP的天然底物.以前的研究表明,DegP的体内底物之一,PapG菌毛蛋白的羧基端多肽能够激活DegP的蛋白酶活性.然而这种激活的机制及生理意义均未见报道.用合成的PapG菌毛蛋白的羧基端多肽对这种激活的机制进行了初步研究.结果表明,DegP与多肽结合后发生了可检测的构象变化.圆二色性光谱结果显示,结合多肽后DegP的二级结构和三级结构均发生了一定的变化.凝胶排阻层析和动态光散射实验也揭示出DegP分子在一定程度上变小.进一步实验表明,DegP在多肽存在下,其疏水表面和催化位点均有所暴露.荧光各向异性结果显示出DegP在结合多肽后其构象柔性降低.对上述结果的意义进行了探讨.  相似文献   
6.
7.
We demonstrated the enhancement of recombinant penicillin acylase (PAC) production in Escherichia coli by increasing the intracellular concentration of the periplasmic protease DegP. Using appropriate host/vector systems (e.g., HB101 harboring pTrcKnPAC2902 or MDDeltaP7 harboring pTrcKnPAC2902) in which the expression of the pac gene was regulated by the strong trc promoter, the overproduction of PAC was often limited by periplasmic processing and inclusion bodies composed of protein aggregates of PAC precursors were formed in the periplasm. The amount of these periplasmic inclusion bodies was significantly reduced and PAC activity was significantly increased upon coexpression of DegP. The specific PAC activity reached an extremely high level of 674 U/L/OD(600) for MDDeltaP7 harboring pTrcKnPAC2902 and pKS12 under optimum culture conditions. However, such improvement in the production of PAC was not observed for the expression systems (e.g., MDDeltaP7 harboring pCLL2902) in which the periplasmic processing was not the step limiting the production of PAC. The results suggest that DegP could in vivo assist the periplasmic processing though the enzyme is shown to be not absolutely required for the formation of active PAC in E. coli. In addition, the steps limiting the production of PAC are identified and the reasons for the formation of PAC inclusion bodies are discussed here.  相似文献   
8.
The periplasmic space in between the inner and outer membrane of Gram-negative bacteria contains numerous chaperones that are involved in the biogenesis and rescue of extra-cytosolic proteins. In contrast to most of those periplasmic chaperones, PpiD is anchored by an N-terminal transmembrane domain within the inner membrane of Escherichia coli. There it is located in close proximity to the SecY subunit of the SecYEG translocon, which is the primary transporter for secretory and membrane proteins. By site-specific cross-linking we now found the periplasmic domain of PpiD also in close vicinity to the SecG subunit of the Sec translocon and we provide the first direct evidence for a functional cooperation between PpiD and the Sec translocon. Thus we demonstrate that PpiD stimulates in a concentration-dependent manner the translocation of two different secretory proteins into proteoliposomes that had been reconstituted with sub-saturating amounts of SecYEG. In addition we found ribosome-associated nascent chains of a secretory protein stalled at SecY also being in close contact to PpiD. Collectively these results suggest that PpiD plays a role in clearing the Sec translocon of newly translocated secretory proteins thereby improving the overall translocation efficiency. Consistent with this conclusion we demonstrate that PpiD contributes to the efficient detachment of newly secreted OmpA from the inner membrane and in doing so, seems to cooperate in a hierarchical manner with other periplasmic chaperones such as SurA, DegP, and Skp.  相似文献   
9.
The nucleotide second messenger c‐di‐GMP nearly ubiquitously promotes bacterial biofilm formation, with enzymes that synthesize and degrade c‐di‐GMP being controlled by diverse N‐terminal sensor domains. Here, we describe a novel class of widely occurring c‐di‐GMP phosphodiesterases (PDE) that feature a periplasmic “CSS domain” with two highly conserved cysteines that is flanked by two transmembrane regions (TM1 and TM2) and followed by a cytoplasmic EAL domain with PDE activity. Using PdeC, one of the five CSS domain PDEs of Escherichia coli K‐12, we show that DsbA/DsbB‐promoted disulfide bond formation in the CSS domain reduces PDE activity. By contrast, the free thiol form is enzymatically highly active, with the TM2 region promoting dimerization. Moreover, this form is processed by periplasmic proteases DegP and DegQ, yielding a highly active TM2 + EAL fragment that is slowly removed by further proteolysis. Similar redox control and proteolysis was also observed for a second CSS domain PDE, PdeB. At the physiological level, CSS domain PDEs modulate production and supracellular architecture of extracellular matrix polymers in the deeper layers of mature E. coli biofilms.  相似文献   
10.
The Kunitz type protease inhibitor aprotinin, containing three intramolecular disulfide bonds, was expressed on the surface of Escherichia coli by Autodisplay. For this purpose, the aprotinin gene was fused in-frame to the transporter domain encoding DNA region of the AIDA-I autotransporter protein. Culture of cells supplied with the artificial gene at reducing conditions resulted in the translocation of aprotinin to the cell surface. Correct folding of aprotinin was shown by high affinity to its target enzyme HLE. No surface translocation was detectable under non-reducing conditions, indicating the degradation of aprotinin in the periplasm. By the use of periplasmic-protease defective E. coli strains PW147, PW151, and PW152, under non-reducing conditions, significant amounts of aprotinin appeared in the periplasm but not at the surface. Our results indicate that aprotinin molecules, reaching stable conformation before transport across the outer membrane, are degraded in the periplasm due to proteolysis. In case folding can be prevented, i.e., by blocking disulfide bond formation in the periplasm, aprotinin is translocated and can adopt its active conformation at the cell surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号