首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Siu-Wah Tse  Jian Yu 《Biofouling》2013,29(4):223-233

Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml?1 carrier) in comparison with PVA particles (4.8 mg VS ml?1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factor in the thicker biofilms (effectiveness factor η = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml?1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l?1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80 - 81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to ~80% by the augmented system.  相似文献   
2.
啤酒酵母生产的重组水蛭素的纯化及脱色   总被引:5,自引:0,他引:5  
对啤酒酵母生产的重组水蛭素变异体1(rHV1)进行多步骤的纯化。首先将分泌到培养上清液中的水蛭素进行硫酸铵沉淀和SephadexG-50凝胶过滤,再用Q-SepharoseHP阴离子交换层析分离,最后用HPLCSP-5PW阳离子交换柱脱色及HPLCC8柱反相层析。真空干燥后得到的水蛭素蛋白经SPS-PAGE、N端氨基酸序列分析、抗凝血酶活力分析鉴定,证明已获得高纯度的重组水蛭素HV1制剂,为利用基因工程方法生产重组水蛭素的规模化生产及临床应用提供了依据  相似文献   
3.
A novel dye-decolourizing strain of the bacterium Serratia marcescens efficiently decolourized two chemically different dyes Ranocid Fast Blue (RFB) and Procion Brilliant Blue-H-GR (PBB-HGR) belonging respectively to the azo and anthraquinone groups. Extracellular laccase and manganese peroxidase (MnP) activity were detected during dye decolourization. The involvement of MnP activity was found in the decolourization of both dyes. More than 90% decolourization of PBB-HGR and RFB was obtained on days 8 and 5, respectively at 26 °C under static conditions at pH 7.0. MnP activity was increased by the addition of Mn2+ · At 50 M Mn2+, high MnP (55.3 U/ml) but low laccase activity (8.3 U/ml) was observed. Influence of oxalic acid on MnP activity was also observed.  相似文献   
4.
Colored wastewater from textile industries is a consequence of dye manufacturing processes. Two percent of dyes that are produced are discharged directly in aqueous effluent and more than 10% are subsequently lost during the textile coloration process. It is not surprising that these compounds have become a major environmental concern. In that context, we have evaluated the potential use of Streptomyces coelicolor laccase for decolourization of various dyes with and without a mediator. Results showed that in all cases the combination of laccase and the mediator acetosyringone was able to rapidly decolourize, to various degrees, all the dyes tested. In 10 min, decolourization was achieved at 94% for acid blue 74, 91% for direct sky blue 6b and 65% for reactive black 5. Furthermore, decolourization was achieved at 21% for reactive blue 19 and at 39% for the direct dye Congo red in 60 min. These results demonstrate the potential use of this laccase in combination with acetosyringone, a natural mediator, for dye decolourization.  相似文献   
5.
In the present paper, a strain of higher MnP producer, Phanerochaete sp. HSD, was screened and the important medium components influencing MnP production were optimized using fractional factorial design and central composite experimental design; statistical analysis suggested diammonium tartrate and Mn2+ were the important factors and under the optimum conditions, MnP activity reached 2613 ± 22 U/l, accorded with the predicted value from response surface analysis. The feasibility of using this fungus to decolourize azo dyes was examined too. Results indicated that crude enzyme solution of it could decolourize three azo dyes efficiently and speedily: for 120 and 350 mg/l of Congo red, 95% decolourization rate was observed at the 5th and 8th hour; for 200, 350 and 600 mg/l methyl orange, 95% decolourization rate was obtained at the 5th, 6th and 9th hour; furthermore, the decolourization rates of 150 and 300 mg/l of Eriochrome black T were up to 97.1% and 91.4% at the 7th and 13th hour, respectively. In addition, MnP played a crucial role in the decolourization process.  相似文献   
6.
Textile dyes are engineered to be resistant to environmental conditions. During recent years the treatment of textile dye effluents has been the focus of significant research because of the potentially low cost of the process. Mechanisms of biological textile dye decolorization depend greatly on the chemical structure of the dye and the microorganisms used. While basidiomycetous filamentous fungi are well recognized for dye decolorization through ligninolytic enzymes, reports on textile dye decolorization mechanisms of basidiomycetous yeasts have been scarce. Decolorization of several textile dyes by Trichosporon akiyoshidainum occurs during the first 12 h of cultivation. This fast decolorization process could not be solely related to siderophore production or dye sorption to biomass; it was shown to be a co-metabolic process. T. akiyoshidainum could use glucose, sucrose, and maltose as alternative carbon sources, and urea as an alternative nitrogen source with similar decolorization rates. The activity of two enzymes, manganese peroxidase and tyrosinase, were induced by the presence of dyes in the culture media, pointing to their potential role during the decolorization process. Manganese peroxidase titers reached 666 U l−1 to 10538 U l−1, while tyrosinase titers ranged between 84 U l−1 and 786 U l−1, depending on the dye tested. The present work provides a useful background to propose new eco-friendly alternatives for wastewater treatment in textile dying industries.  相似文献   
7.
Summary The extracellular ligninolytic enzymes of white-rot fungi are thought to catalyse the initial steps during the degradation of highly complex compounds like lignin or polycyclic aromatic hydrocarbons. We studied the ability of Pleurotus florida isolated from the foothills of the Western Ghats, India to decolourize the three dyestuffs, Reactive Green, Yellow and Blue, which are widely used in the textile industry around Coimbatore, Tamil Nadu, India. The crude culture filtrate of Pleurotus florida when incubated with different concentrations of dye decolourized it efficiently on the third day. The highest colour removal was found in the case of Reactive Blue. However, when Agaricus bisporus extract was supplemented with Pleurotus florida filtrate, the efficiency increased. The dye decolourization was advanced to the second day and the efficiency of dye decolourization of Reactive Yellow was 89% followed by Reactive Green, which was 45% when a dye concentration of 0.5% was used. Pleurotus florida filtrate alone and in combination with Agaricus bisporus extract reduced the aromatic compounds in textile and paper industry effluents on the first day with >90% efficiency.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号