首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2015年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
Members of the Pumilio (also called PUF) gene family belong to a class of highly conserved developmental regulators that are present in both flies and humans. Much is known about the function of Pumilio genes in invertebrate development, in particular their role as stem cell factors required for maintenance and/or self-renewal of germline stem cells in Drosophila and Caenorhabditis elegans. It remains unknown whether Pumilio genes are also required for development in mammals; however, several lines of evidence suggest similar functions based on extensive sequence homology, similar RNA-binding properties to their invertebrate counterparts and well-documented interactions with germ cell factors required for fertility. Here we report characterization of a gene trap mutation that disrupts the mouse Pumilio-2 (Pum2) gene. Our data confirm that Pumilio-2 is expressed most abundantly in germ cells with the highest expression in undifferentiated gonocytes and spermatogonia. Furthermore, the mutation in Pum2 results in significantly smaller testes although the mutants are otherwise viable and fertile. In addition, we observed no stronger reproductive defects on a genetic background homozygous for a Pum2 null mutation and heterozygous for a Dazl mutation than Pum2 mutant alone. Thus, as in C. elegans where single members of the Pumilio gene family are dispensable for reproductive development and viability, this individual member of the Pumilio gene family in mice is also not essential for reproduction or viability.  相似文献   
3.
Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so‐called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA‐binding protein known to play a key role in germ‐cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5‐hydroxylation of methyl‐cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i‐mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1‐mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.  相似文献   
4.
5.
Genetic understanding of male-factor infertility requires knowledge of gene expression patterns associated with normal germ cell differentiation. The mouse is one of the best models of mammalian fertility due to its well-characterized genetics and the existence of many infertile mutants both naturally occurring and experimentally induced. We used cDNA microarrays firstly to investigate normal gene expression in the wild-type (wt) testis and secondly to gain a better insight into the effect of the disruption of the Dazl gene on spermatogenesis. We constructed a cDNA microarray from a subtracted and normalized adult testis library and focused on six developmental time-points during the initial synchronous wave of spermatogenesis. The results suggest that in the wild-type testis, 89.5% of genes on our chip change expression dramatically during the time-course. To identify patterns in the gene-expression data, a k-means clustering algorithm and principal component analysis were used. In the Dazl knockout testes, the majority of genes remain at baseline levels of expression, because absence of Dazl has a severe effect on cell-types present in the testis. Although in the prepubescent Dazl-null mice the final point reached in germ cell development is the leptotene-zygotene stage, the microarray results suggest that lack of Dazl expression has a detectable effect on the mRNA complement of germ cells as early as day 5 when only type A spermatogonia are present. Mol. Reprod. Dev. 67: 26-54, 2004.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号