首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2021年   1篇
  2020年   4篇
  2018年   1篇
  2016年   1篇
  2009年   1篇
  2007年   1篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
2.
Male-biased dimorphism in body size is usually attributed tosexual selection acting on males, through either male competitionor female choice. Brown antechinuses (Antechinus stuartii) aresexually dimorphic in size, and heavier males are known to siremore offspring in the wild. We investigated four possible mechanismsthat might explain this large-male reproductive advantage. Wetested if there is a female preference for large males, a femalepreference for dominant males, if larger males compete moreeffectively for mates, and if there is a survival advantagefor large males during the mating season. We established nestinggroups of males in captivity and conducted mate choice trialsin which males from nesting groups either could or could notinteract. We assessed male dominance rank and recorded survivaltimes after mating. Females did not prefer larger males directly.The results suggest that the other three mechanisms of sexualselection tested account for the large-male advantage: largemales competed more successfully for mates, so were sociallydominant; females rejected subordinates (males they saw losingtwice in contests to previous mates); and dominant males survivedfor longer after their first mating. Females judged male rankbased on direct observation of male competitive interactionsat the time of mating and apparently could not distinguish rankfrom male scent. Effects of size and dominance on male reproductivesuccess are not confounded by age because male antechinusesare semelparous.  相似文献   
3.
The validity of eight morphological features previously advanced as synapomorphic for Dasyuridae is investigated in the light of new fossil and molecular data. Results indicate that one of these features (alisphenoid–periotic enclosure of the foramen ovale) is common to outgroups for Dasyuromorphia. Another feature (loss of intestinal cecum) is a likely synapomorphy for Dasyuromorphia. Two features (development of a hypoconulid notch, enlargement of stylar cusp D) may represent shared–derived characters within Dasyuromorphia but not at the family level for Dasyuridae (i.e., probably unite Dasyuridae–Thylacinidae). Another two features (loss of posterolateral palatine foramina, reduction of P3) are also apomorphic within Dasyuromorphia but unite specialized clades within Dasyuridae. Only two previously treated features are probable synapomorphies for the family (enlargement of the alisphenoid tympanic wing and development of a distinct periotic hypotympanic sinus). An additional feature is identified as a dasyurid synapomorphy (presence of a distinct tubal foramen). Of all putative synapomorphies proposed to date, only the presence of a periotic hypotympanic sinus and tubal foramen are unique for Dasyuridae among dasyuromorphians. Results suggest considerable homoplasy for basicranial features within Dasyuromorphia. Independent acquisition for alisphenoid enclosure of the foramen ovale, development of secondary foramina ovale and loss of posterolateral palatal foramina has occurred in derived thylacinid and dasyurid clades. Convergence is also indicated for hypertrophy of the alisphenoid tympanic wing shown for dasyurids and myrmecobiids, and the development of a squamosal epitympanic sinus in Thylacinidae, Dasyuridae, and Myrmecobiidae. The finding of plesiomorphy for alisphenoid–periotic enclosure of the foramen ovale within Dasyuromorphia undermines the strongest morphology-based synapomorphy uniting a monophyletic Dasyuridae–Myrmecobiidae. Phylogenetic placement for some plesiomorphic fossil dasyuromorphians, known only from dental material, within Dasyuridae is currently untenable, with no dental synapomorphies uniting the family. The value of identifying morphoclines within clades known from robust phylogenetic data for consideration in character analysis is stressed, as is the importance of form–function and ontogenetic data.  相似文献   
4.
We report complete sequences of the cytochrome b, 12S rRNA, and protamine P1 genes from 18 of the 21 extant species of dasyurine marsupials (family Dasyuridae). Partial sequences are included for Pseudantechinus ningbing, but no data are available for Ps. mimulus or Phascolosorex doriae. Phylogenetic analyses of these sequences yield compatible gene trees with limited resolution. Simultaneous parsimony analysis of all three genes suggests the following: (a) a basal polytomy of eight lineages; (b) a sister-group relationship between phascolosoricine genera (Neophascogale and Phascolosorex, which are monophyletic) and Dasyums + Sarcophilus; (c) monophyly of Dasyurus viverrinus, D. albopunctatus, D. geoffroii, and D. spartacus apart from other quolls and Sarcophilus; and (d) sister-pairing of D. geoffroii and D. spartacus Previous attempts at unraveling the phylogenetic history of dasyurines have produced strikingly inconsistent results, due in part to differences in character systems examined, interpretations of character homology and independence, and analytical methods employed. We provide some evidence that the basal polytomy is the result of rapid cladogenesis and suggest that this episode of dasyurine evolution is temporally correlated with the onset of aridification following the New Guinean uplift of 15 million years ago.  相似文献   
5.
We reassessed the phylogenetic relationships of dasyuromorphians using a large molecular database comprising previously published and new sequences for both nuclear (nDNA) and mitochondrial (mtDNA) genes from the numbat (Myrmecobius fasciatus), most living species of Dasyuridae, and the recently extinct marsupial wolf, Thylacinus cynocephalus. Our molecular tree suggests that Thylacinidae is sister to Myrmecobiidae + Dasyuridae. We show robust support for the dasyurid intrafamilial classification proposed by Krajewski & Westerman as well as for placement of most dasyurid genera, which suggests substantial homoplasy amongst craniodental characters presently used to generate morphology‐based taxonomies. Molecular dating with relaxed molecular clocks suggests that dasyuromorphian cladogenesis began in the Eocene, and that all three dasyuromorphian families originated prior to the end of this epoch. Radiation within Thylacinidae and Dasyuridae had occurred by the middle to late Oligocene, consistent with recognition of primitive thylacinids (e.g. Badjcinus turnbulli) in the later Oligocene and of putative dasyurids (e.g. Barinya wangala) by the early Miocene. We propose that all four extant dasyurid tribes were in existence by the early Miocene and that most modern dasyurid genera/species were established before the later Miocene. This is in marked contrast to the popularly accepted advocation of their origins in the latest Miocene–early Pliocene. © 2015 The Linnean Society of London  相似文献   
6.
7.
The black‐tailed dusky antechinus (Antechinus arktos) is a recently discovered, endangered, carnivorous marsupial mammal endemic to the Tweed Shield Volcano caldera, straddling the border between Queensland and New South Wales in eastern Australia. The species' preference for cool, high‐altitude habitats makes it particularly vulnerable to a shifting climate as these habitats recede. Aside from basic breeding and dietary patterns, the species' ecology is largely unknown. Understanding fine‐scale habitat attributes preferred by this endangered mammal is critical to employ successful conservation management. Here, we assess vegetation attributes of known habitats over three sites at Springbrook and Border Ranges National Parks, including detailed structure data and broad floristic assessment. Floristic compositional assessment of the high‐altitude cloud rainforest indicated broad similarities. However, only 22% of plant species were shared between all sites indicating a high level of local endemism. This suggests a diverse assemblage of vegetation across A. arktos habitats. Habitat characteristics were related to capture records of A. arktos to determine potential fine‐scale structural habitat requirements. Percentage of rock cover and leaf litter were the strongest predictors of A. arktos captures across survey sites, suggesting a need for foraging substrate and cover. Habitat characteristics described here will inform predictive species distribution models of this federally endangered species and are applicable to other mammal conservation programs.  相似文献   
8.
Archer provided the most recent and comprehensive suprageneric classification of dasyurid marsupials. Five extant subfamilies, two with constituent tribes, were recognized on the basis of morphological, serological, and allozyme data. Phylogenetic relationships among these groups, however, were totally unresolved. Subsequent molecular studies suggested that the endemic New Guinean subfamilies Muricinae and Phascolosoricinae are parts of larger Australian clades. Our objective in this study was to test the monophyly of Archer's seven groups and estimate relationships among them using DNA sequences from the mitochondrial cytochromeb (cyt-b) gene. We report 657 bp ofcyt-b from 32 dasyuroid species. Phylogenetic analysis of these data leads to the following conclusions: (1) muricines form a clade within Phascogalinae that includes endemic New GuineanAntechinus species; (2) the two genera of Phascolosoricinae are part of a more inclusive Dasyurinae; (3) Sminthopsinae is monophyletic, but the tribes Sminthopsini and Planigalini are not; and (4) the dasyurine tribes Dasyurini and Parantechini are probably not monophyletic. Relationships among Sminthopsinae, Dasyurinae (including phascolosoricines), and Phascogalinae (including muricines) remain unresolved.  相似文献   
9.
Species in the Australian marsupial genus Antechinus exhibit a short annual mating period which is concluded by the abrupt death of all males. The timing of the annual rut within each of the ten described species varies little from year to year at any given locality, but for some species can differ by up to four months between locations. To determine the influence of photoperiod in regulating the precise interannual synchrony of mating and ovulation, we first investigated populations of each species at over 300 localities throughout their geographical ranges to identify the time of reproduction. We then compared the absolute photoperiod and the rate of change of photoperiod prevailing at the time of reproduction in all population localities. A different, and characteristic, rate of change of photoperiod was correlated strongly with the reproductive timing of four species; there was probably a correlation with reproduction in four more species, but sample sizes were small. For two species, there was no obvious photoperiodic correlation with time of reproduction. There was no evidence that absolute photoperiod or ambient temperature explained the synchrony or narrow timespan of reproduction among any species of Antechinus . Different species-specific ovulatory responses to photoperiod appear to separate the timing of reproduction in sympatric species, with the larger member of species pairs usually breeding first. We suggest that photoperiodic cues (1) allow females to produce young during seasons when food is most reliable and abundant and their energetic demands are maximal; (2) facilitate allochronic isolation between sympatric congeners, and (3) maximize body size differences and hence ecological separation between species.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 365–379.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号