首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 19 毫秒
1.
A new planktic foraminiferal zonation has been established for the lower Danian, based on some of most expanded and continuous pelagic sections known to date (from Spain, Tunisia and Mexico). This biozonation is considered valid for low and middle latitudes. The maximum stratigraphical distribution of the index-species approximately coincides in all the studied sections. The index-species are abundant and easily recognizable. We propose the following biozones and subzones: Guembelitria cretacea Zone and the Hedbergella holmdelensis and Parvularugoglobigerina longiapertura subzones; the Parvularugoglobigerina eugubina Zone, which is subdivided into the Parvularugoglobigerina sabina and Eoglobigerina simplicissima subzones and the Parasubbotina pseudobulloides Zone with the Eoglobigerina trivialis and Subbotina triloculinoides subzones. A biomagnetostratigraphic correlation and calibration of the stratigraphical ranges of these species suggest that the biohorizons used to define the new biozonation are very isochronous, at least in the geographical areas analysed.  相似文献   
2.

Premise of the Study

The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well‐represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses.

Methods

Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature.

Key Results

We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide.

Conclusions

Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps’ affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene.  相似文献   
3.
《Palaeoworld》2022,31(2):334-357
This paper presents a quantitative study of dinoflagellate cysts (dinocysts) and palynofacies of the Campanian–Danian marly succession at the village of Tattofte (western External Rif, northwestern Morocco). The paleoenvironmental and paleoclimatic interpretations, inferred from this palynologic analysis, are compared to coeval sequences of other areas in the Northern Hemisphere. Changes in the relative abundances of dinocyst taxa, which are paleoenvironmental indicators, throughout the section suggest a deposition in a marine inner to outer neritic setting. The upper Campanian dinocyst assemblage is characterized by the presence of outer neritic-oceanic and low productivity indicator taxa (e.g., Spiniferites spp., Odontochitina spp.) and cold-water taxa (e.g., Manumiella spp., Chantangiella spp., Laciniadinium spp.), whereas, the lower Maastrichtian assemblage is characterized by inner neritic, high productivity and warm-water indicator taxa (e.g., Palaeocystodinium spp., Andalusiella spp.). The upper Maastrichtian dinocyst assemblage displays a return to an outer neritic environment under a transgressive regime, but with a cooling pulse and a moderate productivity. However, the Cretaceous–Paleogene (K/Pg) boundary interval records remarkable changes in the relative abundances of dinocyst taxa, indicating an inner neritic (coastal) setting, which is the most proximal in the study section; such changes reflect instable paleoenvironmental conditions which may be related to global cooling periods, likely caused by the Deccan volcanism in India and/or the Chicxulub asteroid impact in Mexico at the K/Pg boundary. In the Danian, the dinocyst relative abundances indicate a gradual return to stable environmental conditions.A quantitative analysis of the kerogen plots (palynomorphs, phytoclasts and amorphous organic matter (AOM)) reveals five types of palynofacies, generally indicating oxic to suboxic marine environments. The upper Campanian and upper Maastrichtian (lowermost part) strata are characterized by a playnofacies (V), indicating a distal shelf, while the lower Maastrichtian and lower Danian (uppermost part) strata record a playnofacies (III), reflecting an intermediate inner-outer neritic environment. However, the K/Pg boundary transition is characterized by playnofacies types (I) and (II), indicating a proximal (coastal) environment.  相似文献   
4.
The rhynchonellid brachiopod Obliquorhynchia flustracea from the middle Danian (Paleocene) cool‐water coral mounds of the Faxe Formation, Denmark, exhibits commissural asymmetry, a rare feature in articulate brachiopods. It has been much discussed whether the underlying reasons for this asymmetry were species specific caused by pedicle attachment in the limited space between the branches of the scleractinian Dendrophyllia candelabrum. The two species are always found together, and the brachiopod is essentially missing outside facies characterized by Dcandelabrum. Based on morphological analyses and statistical tests, we suggest that ecophenotypic variation is the main reason for the variability in the external shell morphology and development of commissural asymmetry. Conditions such as sexual dimorphism and defects can be dismissed as a facilitating reason of phenotypic variation. This is a rare case where it is possible to directly link commissural asymmetry to mode of attachment on a specific host.  相似文献   
5.
The boring Teredolites longissimus Kelly and Bromley is recorded infesting silicified logs in the Fossil Wood Member, Kangilia Formation (Lower Danian, Paleocene) of West Greenland. There are two morphologies of T. longissimus, probably representing two different episodes of invasion of the wood. The initial borings of Morphology 1 are large, deformed to an elliptical section, and confined to a direction of boring parallel to sub-parallel to the wood grain. Morphology 2 borings are less common, narrower and shorter, sinuous, markedly crosscut the grain of the wood and, where preserved intact, retain their circular cross-section. They were a later infestation than Morphology 1. Following the infestation by Morphology 1, the logs were deformed, probably by weight of overburden, and then reworked, when some of them were infested by Morphology 2 producers. Final burial was followed by brittle collapse of some Morphology 2 borings and lithification before further deformation could occur. The occurrence of T. longissimus in deeper water deposits close to a land mass with a steep slope indicates that transport in the marine realm was minimal before waterlogging.  相似文献   
6.
7.
The families Achariaceae and Salicaceae (Malpighiales) are characterized by wood anatomical ranges that partly overlap. Formerly these families were treated together in the polyphyletic Flacourtiaceae and a much more narrowly circumscribed Salicaceae. Here we attribute two recently collected fossil woods from the Deccan Intertrappean Beds to the clade that contain these two families, i.e., the Parietal Clade of the Malpighiales. The new genus Elioxylon shares features with several extant genera of Achariaceae and Salicaceae, but does not completely match with any of them. A new record of Hydnocarpoxylon indicum Bande & Khatri is a good match for extant Hydnocarpus Gaertn. (Achariaceae). Elioxylon and Hydnocarpoxylon share an absence of parenchyma, the presence of septate fibres and 1–3 seriate heterocellular rays with long uniseriate margins consistent with Achariaceae and Salicaceae. Elioxylon has mixed simple and scalariform perforations, whereas Hydnocarpxylon has exclusively scalariform perforations. Other Deccan fossils formerly attributed to “Flacourtiaceae” in the literature are critically discussed and mostly excluded from Achariaceae and Salicaceae. Elioxylon and Hydnocarpoxylon from the Maastrichtian ‐ Danian of India are the oldest fossil records of the Parietal Clade of the Malpighiales. With their occurrence on the Indian plate during its northward journey from Gondwana to Laurasia, these fossils provide further support for an ‘out‐of‐India’ hypothesis for Achariaceae and/or Salicaceae. “Baileyan trends” in vessel perforation plate and vessel grouping evolution are apparent in the phylogeny of the Parietal Clade.  相似文献   
8.
9.
A new species, Phoenicopsis anadyrensis Nosova, is described based on the leaf morphology and cuticle features from the Maastrichtian–Danian Rarytkin Formation, Chukotka, North-East of Russia. It is characterized by hypostomatic leaves with stomatal bands on the abaxial side, undulate anticlinal epidermal cell walls and papillae on the epidermal cells and on the subsidiary cells of the stomata. The new species is the youngest reliable representative of the genus Phoenicopsis. This record extends the stratigraphic range of Phoenicopsis from its previously known latest records in the early Campanian up to Maastrichtian–Danian. The persistence of the genus Phoenicopsis up to the Cretaceous–Paleogene boundary is most likely related with vicinity to mountain floras associated with Late Cretaceous and Paleogene volcanic uplands.  相似文献   
10.
It has been clearly demonstrated that past climate fluctuations are recorded in marine sedimentary rocks. However, for many reasons, extracting the climate signature is difficult. Initial low-field mass-specific magnetic susceptibility (MS) data can potentially provide a measure of climate variability and thus become a proxy characterizing climate cyclicity in a wide range of marine sediments. This is due to the fact that climate change (warm, wet versus cold, dry) drives cyclic weathering and erosional variations that are recorded as the detrital components of marine sediment that dominates the MS. To test the utility of MS to yield climate proxies in marine sediments showing major changes in lithology, we have sampled the well-studied Danian/Selandian boundary interval (Lower Paleocene) at Zumaia (Zumaya), Spain. This interval represents a dramatic, rapid lithologic change from Danian carbonate-dominated limestone–marl couplets to a detrital-dominated marl-shale sequence in the Selandian, indicating onset of a major regression-erosional event beginning in the lowest Selandian. Sampling included a continuous sequence from the uppermost Danian Stage (3.71 m) into the lowermost Selandian Stage (5.2 m), a suite of 175 samples collected at 5 cm intervals. Our results indicate that MS measurements reflect changes in detrital sediment at the site, first by closely tracking high-frequency limestone–marl couplets, second with a large, rapid shift toward higher MS values beginning at the Danian/Selandian boundary resulting from a major regression, and third by tracking low-frequency climate-controlled variations known to have occurred during deposition of these sediments. MS zones developed from the cyclicity observed throughout the sequence, supported by time series analysis using Fourier Transform (FT) methods applied to the MS results, exhibit Milankovitch cyclicities in the precessional (19–24 kyr), obliquity (41–54 kyr) and eccentricity bands (100 kyr). This is in excellent agreement with previous FT work on the section using measured variations in cyclic bed thicknesses. With the new MS data set and FT results, we then developed a Floating Point Time Scale (FPTS) for the sequence sampled (covering  550 kyr through the Danian/Selandian boundary interval), yielding a time-scale resolution for the uppermost Danian to  10,000 years. However, only the  100,000 year eccentricity band for the Selandian is sufficiently well developed for an FPTS estimate, and yields a time-scale resolution of  50,000 years. Our test of the utility of MS data sets in this varying depositional setting demonstrated that these data can provide a climate proxy that is not disrupted by large lithologic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号