首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   6篇
  国内免费   5篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
2.
3.
We present the first experimental results on salinity tolerance and regulation mechanisms in the genus Tolypella. The two species investigated, T. nidifica and T. glomerata, regulate turgor pressure with almost complete effectiveness by adjustment of K+ and CT concentrations. Sucrose is also involved. The mechanism is basically identical to the mechanism of turgor pressure regulation previously identified in representatives of the genera Chara and Lamprothamnium. Since Chara and Lamprothamnium on the one hand and Tolypella on the other belong to different phylogenetic branches that separated early in the geological history of the Characeae, the K+ regulation mechanism can be assumed to represent an ancient pattern derived from a salt-tolerant common ancestor. Furthermore, our experiments provide evidence that salinity is a limiting factor for fertility in both T. nidifica and T. glomerata. Although the onset of gametangia covers the whole range of salinities tested here (0–29 psu), 12psu was the inhibitory level for the formation of mature oospores. Fertilization is probably disturbed by an increase in salinity. An inability to reproduce sexually under euryhaline conditions could explain why the distribution of the two species is restricted to oligo- and mesohaline environments, despite the wide range of salinity tolerance of their vegetative apparatus.  相似文献   
4.
Abstract Androdioecy (the presence of males and hermaphrodites in a breeding population) is a rare reproductive system in plants, with Datisca glomerata (Datiscaceae) representing the only well-documented example. Recent reports of high outcrossing rates, inbreeding depression, and high male pollen production satisfy theoretical predictions for the continued maintenance of androdioecy in populations of this species. However, in prior studies pollen production was measured indirectly in terms of numbers of anthers per flower—based on the assumption that male and hermaphroditic plant have equal numbers of flowers and that anthers from the two sexual morphs produce equivalent amounts of pollen. Herein, we demonstrate that male and hermaphrodite plants do not differ significantly in terms of flower number, but that pollen production in anthers from hermaphroditic plants is 12.6% higher than in anthers from male plants, thus refining the estimate of relative pollen fecundity of male versus hermaphrodite plants. The differential lowers the frequency of males predicted by theory, but is still consistent with the maintenance of androdioecy in this species.  相似文献   
5.
About 70 Streptomyces species, isolated from soils of greenhouses and citrus orchards were evaluated for their antagonistic activity against Verticillium dahliae, Fusarium subglutinans, Fusarium sambucinum, Phoma glomerata and Nattrassia mangiferae. Preliminary screening for antimicrobial activity was determined by dual culture method. The soils of Kerman are rich sources of micro-organisms with potent biological activities, and screening programmes are to be conducted to reveal the presence of active Actinomycetes isolates against phytopathogenic fungi.  相似文献   
6.
The co‐occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew‐infected plants, but were quantitatively 41% lower for mildew‐infected plants compared to healthy plants. Parasitoids strongly preferred Pieris‐infested plants to dually‐infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew‐infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew‐infected plants. Thus, avoidance of mildew‐infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew‐infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.  相似文献   
7.
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification.  相似文献   
8.
Abstract. Plant traits which may give an indication of a plant's strategy for nutrient acquisition and regeneration are known for numerous grassland species. This study aimed to establish whether there is any relationship between two plant traits: specific leaf area (SLA) and number of reproductive tillers, and sward structural characteristics which influence herbage intake by grazers (bulk density and digestibility, leaf:stem ratio). Comparison is made for nutrient‐rich (Dactylis glomerata) and nutrient‐poor (Festuca rubra) grass species. We hypothesized that these traits are responsive to environmental gradients and also act on the processes of the ecosystem. Both grasses were compared with two P‐fertilizer rates in two localities (200 and 1300 m a.s.l.) which differed in their temperature:radiation ratios. For the vegetative phase SLA was well correlated with sward characteristics: D. glomerata, which has the higher SLA, has the lower bulk density and higher digestibility. The values of SLA and vegetation bulk density varied according to growing conditions (P‐rate and temperature:radiation ratio), but the ranking of the species remained the same because the phenotypic plasticity that exists for plant traits was also observed for sward structure and composition. That suggested the possibility of grouping natural grassland species for their relevant characteristics for grazers according to SLA values. Over the reproductive phase, the proportion of stems was well correlated to the percentage of reproductive tillers. However, the percentage of reproductive tillers was a very plastic trait for both species, depending on the growing conditions, and resulting in a density‐dependent effect, particularly for F. rubra. The species studied were too plastic and too similar in their regenerative strategy so that there is no unique relationship between percentage of reproductive tillers and stem proportion, regardless of the species and the growing conditions. The number of reproductive tillers is not a suitable plant trait which could be used to rank species for leaf and stem proportions in the sward.  相似文献   
9.
The Sydney rock oyster (Saccostrea glomerata) is a commercially important bivalve in southeastern Australian. We describe the isolation and characterization of nine microsatellite markers for S. glomerata. The loci are highly polymorphic, with between five and 20 alleles identified among 30 individuals. Expected heterozygosity levels ranged from 0.608 to 0.936. The markers will be used to study natural dispersal, translocations and population structure. We will also use the microsatellites to test the genetic effects of QX disease on oyster populations. This infectious parasitic disease has decimated S. glomerata productivity in a number of areas over the past few decades.  相似文献   
10.
Protandry, the earlier adult emergence of males, is explained as either an adaptive strategy maximizing male mating opportunities at the same time as minimizing female pre‐reproductive mortality, or as an incidental by‐product of sexual dimorphism fuelled by selection for other life‐history traits. Adult emergence sequences are monitored of broods of the gregarious larval endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) undergoing pupal development under different temperature regimes. As a haplodiploid species with single‐locus complementary sex determination, gender in C. glomerata is determined by the genotype at one sex locus. Haploids are always male, whereas diploids are female when heterozygous but male when homozygous at the sex locus. Sibling mating promotes homozygosity and thus the production of diploid males. Diploid males are produced at the expense of females, and impose a genetic burden on individuals and populations, despite their exceptional fertility in C. glomerata. Emergence of broods is typically completed within 2 days. Irrespective of temperature, males emerge earlier and within a shorter time interval than females, and a majority of the males in a cluster emerge before the first female. The implications of an incomplete temporal segregation of the sexes on the incidence of inbreeding in C. glomerata are discussed in the light of its sex determination mechanism and its patterns of mating, host exploitation and natal dispersal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号