首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2018年   1篇
  2014年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   
2.
Cancer is one of the major causes of death globally. The current treatment options are insufficient, leading to unmet medical needs in cancer treatment. Off-target side effects, multidrug resistance, selective distribution to cancerous tissues, and cell membrane permeation of anti-cancer agents are critical problems to overcome. There is a method to solve these problems by using receptor-mediated endocytosis (RME). It is well known that proteins such as integrin, HER2, EGFR, or other cancer biomarkers are specifically overexpressed on the surface of target cancer cells. By taking advantage of such specific receptors, payloads can be transported into cells through endocytosis using a conjugate composed of the corresponding ligands connected to the payloads by an appropriate linker. After RME, the payloads released by endosomal escape into the cytoplasm can exhibit the cytotoxic activity against cancer cells. Cell-penetrating peptides (CPPs), tumor-homing peptides (THPs), and monoclonal antibodies (mAbs) are utilized as ligands in this system. Antibody drug conjugates (ADCs) based on RME have already been used to cure cancer. In addition to the canonical conjugate method, nanocarriers for spontaneous accumulation in cancer tissue due to enhanced permeability and retention (EPR) effect are extensively used. In this review, I introduce the possibilities and advantages of drug design and development based on RME for the treatment of cancer.  相似文献   
3.
A simple approach to synthesize phospholipids to modulate drug release and track lipid-based particulate drug-carriers is described. We synthesized two ether lipids, 1 1-O-hexadecyl-2-pentadenoyl-sn-glycerol-3-phosphocholine (C(31)PC) and 2 1-O-hexadecyl-2-pentadenoyl-sn-glycerol-3-phosphomethanol (C(31)PM), and examined their ability to alter enzymatically triggered release of 6-carboxyfluorescein from liposomes incubated in TRIS buffer or fetal bovine serum solutions. Further, we demonstrated that odd-chain lipids, for example, C(31)PC, could be identified in rat plasma without interference of endogenous lipids. This approach can be adapted to synthesize a variety of lipids for use in developing and optimizing multifunctional drug-carriers.  相似文献   
4.
Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints ( and ). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of siRNA and chemotherapeutic drug treatments.  相似文献   
5.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG2000) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG2000. At this proportion of DSPE-PEG2000, the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG2000 in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   
6.
The role of the surface polymer brush of nonionic surfactant vesicles (NSV) in inhibiting interactions with small membrane-perturbing molecules was investigated using the bee venom peptide melittin as a probe. The interaction between melittin and NSV was compared with that of distearoylphosphatidylcholine (DSPC) vesicles and sterically stabilised liposomes (SSL) containing 5 mol% pegylated distearoylphosphatidylethanolamine (DSPE.E44). The degree of melittin interaction with the various vesicles was determined by measuring peptide binding and folding, using intrinsic tryptophan fluorescence and circular dichroism respectively, in addition to monitoring the release of encapsulated carboxyfluorescein dye. NSV composed of 1,2-di-O-octadecyl-rac-glyceryl-3-(ω-dodecaethylene glycol) (2C18E12) showed a strong affinity for melittin, whilst exhibiting ~ 50% less bound peptide than SSL. 2C18E12:Chol vesicles showed reduced melittin interaction, in a manner consistent with Chol incorporation into DSPC vesicles. These results are discussed with respect to the effect of Chol on the in-plane order of 2C18E12 bilayers and consequent attenuation of hydrophobic interactions with the peptide. NSV formed from equimolar mixtures of polyoxyethylene-n-stearoyl ethers C18E2 and C18E20 showed a greater interaction with melittin than 2C18E12. However, replacing C18E20 with C18E10 was sufficient to achieve an attenuation of melittin interaction similar to that observed in 2C18E12:Chol vesicles. This indicates that the presence of surface polymer brush alone may confer resistance to melittin, provided hydrophobic interactions between the peptide and the vesicles can be minimised, through improved in-plane bilayer order.  相似文献   
7.
A simple and inexpensive method for functionalization of preformed liposomes is presented. Soy sterol-PEG1300 ethers are activated by tresylation at the end of the PEG chain. Coupling of bovine serum albumin as an amino group containing model ligand to the activated lipids can be performed at pH 8.4 with high efficiency. At room temperature, the mixture of sterol-PEG and sterol-PEG-protein inserts rapidly into the outer liposome monolayer with high efficiency (>100 μg protein/μmol total lipid). This method of post-functionalization is shown to be effective with fluid or rigid and plain or pre-PEGylated liposomes (EPC/Chol, 7:3; HSPC/Chol 2:1, and EPC/Chol/MPEG2000-DSPE 2:1:0.16 molar ratios). The release of entrapped calcein upon the insertion of 7.5 mol% of the functionalized sterols is lower than 4%. Incubation of post-functionalized liposomes with serum for 20 h at 37 °C shows stable protein attachment at the liposome surface.  相似文献   
8.
In route to a physical study aimed at understanding lipids and proteins sorting in cells, we designed a rhodamin-labelled biotinylated phosphatidylethanolamine (PE), as a useful and easy-attainable lipid double probe. The target compound was successfully engaged in preliminary physical experiments.  相似文献   
9.
The aim of this study was to elucidate the effect of various mole percentages (0-25 mol%) of 2000 Da polyethylene glycol-disteroylphosphoethanolamine (PEG-DSPE) in the presence or absence of 40 mol% cholesterol and the effect of degree of saturation of phosphatidylcholine (PC) on the size and the lipid bilayer packing of large unilamellar vesicles (LUV). Egg PC (EPC, unsaturated) LUV and fully hydrogenated soy PC (HSPC, saturated) LUV partial specific volume, specific compressibility, size, and packing parameter (PP) of lipids were characterized by measurements of density, ultrasonic velocity, specific turbidity, and dynamic light scattering. Liposome size and specific turbidity decreased with increase in temperature and PEG-DSPE mol%, except at 7+/-2 mol%. At this PEG-DSPE mol%, an anomalous peak in liposome size of 15+/-5 nm was observed. We attribute this effect mainly to the change in the spatial structure of the PEG-DSPE molecule, depending on whether the grafted PEG is in the mushroom or brush configuration. In the mushroom regime, i.e., when the grafted PEG is up to 4 mol% in LUV, the PEG moiety did not affect the additive PP of the lipids in the bilayer, and the PP value of PEG-DSPE is 1.044; while in the brush regime, i.e., when the grafted PEG is higher than 4 mol%, the PP of PEG-DSPE decreases exponentially, reaching the value of 0.487 at 30 mol% of grafted lipopolymer. The specific compressibility and additive PP values for the mixture of matrix lipid (EPC or HSPC), cholesterol, and PEG-DSPE for all liposome compositions investigated reached their maximum at 7+/-2 mol% PEG-DSPE, the concentration of PEG-DSPE at which the highest biological stability of the LUV is achieved.  相似文献   
10.
Hyaluronan synthase (HAS) is a unique membrane-associated glycosyltransferase and its activity is lipid dependent. The dependence however is not well understood, especially in vertebrate systems. Here we investigated the functional association of hyaluronan synthesis in a cholesterol-rich membrane-environment. The culture of human dermal fibroblasts in lipoprotein-depleted medium attenuated the synthesis of hyaluronan. The sequestration of cellular cholesterol by methyl-ß-cyclodextrin also decreased the hyaluronan production of fibroblasts, as well as the HAS activity. To directly evaluate the effects of cholesterol on HAS activity, a recombinant human HAS2 protein with a histidine-tag was expressed as a membrane protein by using a baculovirus system, then successfully solubilized, and isolated by affinity chromatography. When the recombinant HAS2 proteins were reconstituted into liposomes composed of both saturated phosphatidylcholine and cholesterol, this provided a higher enzyme activity as compared with the liposomes formed by phosphatidylcholine alone. Cholesterol regulates HAS2 activity in a biphasic manner, depending on the molar ratio of phosphatidylcholine to cholesterol. Furthermore, the activation profiles of different lipid compositions were determined in the presence or absence of cholesterol. Cholesterol had the opposite effect on the HAS2 activity in liposomes composed of phosphatidylethanolamine or phosphatidylserine. Taken together, the present data suggests a clear functional association between HAS activity and cholesterol-dependent alterations in the physical and chemical properties of cell membranes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号