首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
He H  Yu J  Liu Y  Lu S  Liu H  Shi J  Jin Y 《Cell biology international》2008,32(7):827-834
Two crucial growth factors, FGF2 and TGFbeta1, were investigated in this study to determine their inductive effects on the odontoblastic differentiation of human dental pulp stem cells (DPSCs) in vitro. DPSCs were isolated by immunomagnetic bead selection using the STRO-1 antibody, and then co-cultured respectively with FGF2, TGFbeta1 and FGF2+TGFbeta1. The results showed that FGF2 can exert a significant effect on the cell proliferation, while TGFbeta1 or FGF2+TGFbeta1 can initiate an odontoblast-like differentiation of DPSCs. Moreover, FGF2 can synergistically upregulate the effects of TGFbeta1 on the odontoblastic differentiation of DPSCs, as indicated by the increased alkaline phosphatase activity, the polarized cell appearance and secretary ultrastructural features, the formation of mineralized nodules and the gene/protein expression of dentin sialoprotein and dentin matrix protein-1. Together, FGF2 acted primarily on the cell proliferation, while TGFbeta1 and FGF2+TGFbeta1 mainly stimulated the odontoblastic differentiation of DPSCs. This study provides interesting progress in the odontoblastic differentiation of DPSCs induced by FGF2 and TGFbeta1.  相似文献   
3.
4.
5.
Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.  相似文献   
6.
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号