首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2012年   1篇
  2006年   1篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   
2.
Agonists at G‐protein‐coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock‐out mice devoid of the serotonin transporter (5‐HTT?/?) exhibit lower efficacy to inhibit cellular discharge than in wild‐type counterparts. Using patch‐clamp whole‐cell recordings, we found that a G‐protein‐gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5‐HT1A agonists (5‐carboxamidotryptamine (5‐CT) and (±)‐2‐dipropylamino‐8‐hydroxy‐1,2,3,4‐tetrahydronaphthalene hydrobromide (8‐OH‐DPAT); 50 nM–30 μM) in both wild‐type and 5‐HTT?/? female and male mice. These effects were mimicked by 5′‐guanylyl‐imido‐diphosphate (Gpp(NH)p; 400 μM) dialysis into cells with differences between genders. The 5‐HTT?/? knock‐out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5‐HT1A receptors to agonists in 5‐HTT?/? mutants reflects notably alteration in the coupling between G‐proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5‐HT neurotransmission appear to depend—at least in part—on sex‐related variations in corresponding receptor‐G protein signaling mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
3.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   
4.
Zebrafish (Danio rerio) have an innate tendency to join shoals. Based on this, we refined visual choice tests to focus on social interaction and novelty preference. Our design follows mouse three-chamber sociability protocols, except testing is conducted under 940 Lux fluorescent lighting. Initially, we compared performance among zebrafish strains: inbred (AB) or wild-crossbred (WIK) from Zebrafish International Resource Center, to golden and short-fin from Petco stores. AB fish exhibited a preference for shoaling; they dwelled longest near transparent boxes containing zebrafish, while short fin favored blue boxes without fish. AB and golden exhibited a strong preference for social novelty, not evident in short-fin or WIK fish. Serotonin and cannabinoids shape mammalian social behavior, and equivalents of both receptor types are expressed in the zebrafish brain. We examined the effects of the cannabinoid receptor agonist WIN 55,212-2 (1 mg/l), or serotonin 5-HT(1A) receptor agonist buspirone (10 mg/l) on Petco short-fin social choice. Fish were bath exposed to test compounds for 10 min, under these conditions [(3) H]CP55,940 (4 nm) bound to brain with a concentration of 1.9-6.4 fmol/mg 5-30 min afterward. Social approach was measured 20 min after acclimation to the test arena. WIN 55,212-2 and buspirone increased dwelling near boxed zebrafish. In zebrafish whole-brain homogenates, buspirone displaced [(3) H] 8-hydroxy-N,N-dipropylaminotetralin (dissociation constant, K(D) = 16 ± 1.2 nm) with an inhibition constant (K(i) ) of 1.8 ± 1.0 nm lower than that of WAY 100,635 (K(i) ~1000 nm). These fish social choice tests may enhance social behavior research, and are useful for studying the effects of genetic manipulations, pharmaceuticals or environmental toxins.  相似文献   
5.
Racemic 5-hydroxy-2-(dipropylamino)tetralin (5-OH DPAT), a potent and selective dopamine (DA) D2-receptor agonist, was resolved into the enantiomers by a new method. The enantiomers of 5-OH DPAT were determined by chiral ion-pair chromatography using N-benzyloxycarbonylglycyl-L-proline as the counter ion. The enantiomeric purity of (R)-5-OH DPAT was found to be greater than 99.7%. The ability of the enantiomers to change the rat brain DOPA levels was evaluated in vivo. The results indicate that (R)-5-OH DPAT is a weakly potent DA D2-receptor antagonist.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号