首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   7篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2011年   4篇
  2010年   1篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
1.
In order to determine the crown and root agents and their mycotoxins produced in different growth stages of wheat including seedling, tillering and heading, sampling was done in north of Iran, during 2011–2012. From 160 isolates of Fusarium, eight species were obtained including F. graminearum, F. culmorum, F. equiseti, F. nygamai, F. semitectum, F. solani, F. acuminatum and F. oxysporum. Sampling at different growth stages showed that F. graminearum was the predominant causal agent of crown and root at the heading stage, whereas other species of Fusarium were mostly observed at the seedling and tillering stages. Moreover, identification of pathogenic species was confirmed using species-specific primers pairs. In F. graminearum isolates, presence of Tri13 gene, responsible for nivalenol (NIV) and deoxynivalenol (DON) mycotoxins biosynthesis, was detected using specific PCR primers. Finally, the ability of trichothecene production of five F. graminearum isolates was confirmed with high-performance liquid chromatography.  相似文献   
2.
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein–protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1–β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1–β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.  相似文献   
3.
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) of small grain cereals, but the importance of weeds in the FHB disease cycle and the establishment of F. graminearum in agroecosystems are still not fully understood. The objective of this study was to determine the potential role of weeds present within cereal crop rotations as alternative hosts. F. graminearum was isolated from different organs of asymptomatic weeds sampled from six fields with cereal-crop rotations in Lithuania for two consecutive years (2015 and 2016). The fungi were identified using morphological and molecular methods. Out of 57 weed species that were investigated, 41 (71.9%) harboured F. graminearum isolates. Twenty five weed species were identified as new, previously undocumented, hosts. The majority (73.3%) of the isolates of F. graminearum from this study belonged to the 15ADON genotype while a smaller proportion (23.4%) belonged to the 3ADON genotype. All F. graminearum isolates that were assessed induced FHB symptoms on artificially inoculated spring wheat tested in the field.  相似文献   
4.
Effect of exogenous H(2)O(2) and catalase was tested in liquid cultures of the deoxynivalenol and 15-acetyldeoxynivalenol-producing fungus Fusarium graminearum. Accordingly to previous results, H(2)O(2) supplementation of the culture medium leads to increased toxin production. This study indicates that this event seems to be linked to a general up regulation of genes involved in the deoxynivalenol and 15-acetyldeoxynivalenol biosynthesis pathway, commonly named Tri genes. In catalase-treated cultures, toxin accumulation is reduced, and Tri genes expression is significantly down regulated. Furthermore, kinetics of expression of several Tri genes is proposed in relation to toxin accumulation. Biological meanings of these findings are discussed.  相似文献   
5.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+-ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+-ATPases: FgPMA1 and FgPMA2 in Fgraminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.  相似文献   
6.
Unstable snow cover and more frequent freeze–thaw events have been predicted for montane areas in southern Norway, where stable winters are common today. These systems are important contributors to the flux of carbon (C) and nitrogen (N) to air and water. Here we quantify and compare the effects of freeze–thaw on C and N release from soils collected below Calluna, Molinia or Sphagnum. Intact organic soil cores were subjected to four different freeze–thaw regimes for four consecutive 2‐week periods: (1) slow cycling (SC) with one long freezing event during each 2‐week period, (2) fast cycling (FC) with four short freezing events during each 2‐week period, (3) permanent frost (PF) and (4) permanent thaw (PT). The freezing temperature was −5 °C and the thawing temperature was 5 °C. Before start of treatment, at the end of each 2‐week period, and during postincubation periods, carbon dioxide (CO2) emission as well as leachable dissolved organic C (DOC), dissolved organic N (DON), ammonium (NH4), nitrate (NO3) and absorbance at 254 nm were measured. In soils from all three vegetations, PF increased the release of CO2, DOC, DON and NH4 compared with PT. SC caused some scattered effects whereas FC only resulted in some increase in NO3 release below Molinia. Generally, the emission of CO2 and leaching of DOC, DON and NH4 increased in the following order: Sphagnum < Calluna < Molinia. The release of NO3 was greatest below Calluna. Our data suggest that vegetation cover and composition seem at least as important as increased soil frost for future winter fluxes of CO2, DOC, DON and dissolved inorganic N (DIN) from the soil to air and water. The freezing period needs to be sufficiently long to give significant effects.  相似文献   
7.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   
8.
Summary. We examined the effects of DON [glutamine-analogue and inhibitor of glutamine-requiring enzymes], alanyl-glutamine (regarding its role in neutrophil immunonutrition) and alanyl-glutamine combined with L-NAME, SNAP, DON, β-alanine and DFMO on neutrophil amino and α-keto acid concentrations or important neutrophil immune functions in order to establish whether an inhibitor of •NO-synthase [L-NAME], an •NO donor [SNAP], an analogue of taurine and a taurine transport antagonist [β-alanine], an inhibitor of ornithine-decarboxylase [DFMO] as well as DON could influence any of the alanyl-glutamine-induced effects. In summary, irrespective of which pharmacological, metabolism-inhibiting or receptor-mediated mechanisms were involved, our results showed that impairment of granulocytic glutamine uptake, modulation of intracellular glutamine metabolisation and/or de novo synthesis as well as a blockade of important glutamine-dependent metabolic processes may led to significant modifications of physiological and immunological functions of the affected cells.  相似文献   
9.
We examined the effects of beta-alanine (taurine analogue and taurine transport antagonist), taurine (regarding its role in neutrophil (PMN) immunonutrition) and taurine combined either with L-NAME (inhibitor of *NO-synthase), SNAP (*NO donor), DON (glutamine-analogue and inhibitor of glutamine-requiring enzymes), DFMO (inhibitor of ornithine-decarboxylase) and beta-alanine on neutrophil amino- and alpha-keto acid profiles or important PMN immune functions in order to establish whether taurine transport-, nitric oxide-, glutamine- or ornithine-dependent mechanisms are involved in any of the taurine-induced effects. According to the present findings, the taurine-mediated effect appears to be based primarily on a modulation of important transmembraneous transport mechanisms and only secondarily on directly or indirectly induced modifications in intragranulocytic amino- and alpha-keto acid homoeostasis or metabolism. Although a direct relation to the parallel observed immunological modifications can only be presumed, these results show very clearly that compositional modifications in the free intragranulocytic amino- and alpha keto-acid pools coinciding with changes in intragranulocytic taurine levels are relevant metabolic determinants that can significantly influence the magnitude and quality of the granulocytic immune response.  相似文献   
10.
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape‐scale controls on potential production of these compounds using a one‐year laboratory incubation at two temperatures (10° and 30 °C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80–370 mg CO2‐C g soil C?1 and 5–46 mg DOC g soil C?1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号