首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  6篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl‐CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non‐alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance.  相似文献   
3.

Introduction

The hormonal milieus of pregnancy and lactation are driving forces of nutrient fluxes supporting infant growth and development. The decrease of insulin sensitivity with compensatory hyperinsulinemia with advancing gestation, causes adipose tissue lipolysis and hepatic de novo lipogenesis (DNL).

Subjects and methods

We compared fatty acid (FA) contents and FA-indices for enzyme activities between preterm (28–36 weeks) and term (37–42) milks, and between colostrum (2–5 days), transitional (6–15) and mature (16–56) milks. We interpreted FA differences between preterm and term milks, and their changes with lactation, in terms of the well known decrease of insulin sensitivity during gestation and its subsequent postpartum restoration, respectively.

Results

Compared with term colostrum, preterm colostrum contained higher indices of DNL in the breast (DNL-breast) and medium chain saturated-FA (MCSAFA), and lower DNL-liver and monounsaturated-FA (MUFA). Preterm milk also had higher docosahexaenoic acid (DHA) in colostrum and transitional milk and higher arachidonic acid (AA) in mature milk. Most preterm-term differences vanished with advancing lactation. In both preterm and term milks, DNL-breast and MCSAFA increased with advancing lactation, while DNL-liver, MUFA, long chain SAFA and AA decreased. DHA decreased in term milk. MUFA was inversely related to MCSAFA in all samples, correlated inversely with PUFA in colostrum and transitional milks, but positively in mature milk. MCSAFA correlated inversely with PUFA in mature milk.

Conclusion

Higher maternal insulin sensitivity at preterm birth may be the cause of lower MUFA (a proxy for DNL-liver) and higher MCSAFA (a proxy for DNL-breast) in preterm colostrum, compared with term colostrum. Restoring insulin sensitivity after delivery may be an important driving force for milk FA-changes in early lactation.  相似文献   
4.
Evidence has accumulated that specific retinoids impact on developmental and biochemical processes influencing mammalian adiposity including adipogenesis, lipogenesis, adaptive thermogenesis, lipolysis and fatty acid oxidation in tissues. Treatment with retinoic acid, in particular, has been shown to reduce body fat and improve insulin sensitivity in lean and obese rodents by enhancing fat mobilization and energy utilization systemically, in tissues including brown and white adipose tissues, skeletal muscle and the liver. Nevertheless, controversial data have been reported, particularly regarding retinoids' effects on hepatic lipid and lipoprotein metabolism and blood lipid profile. Moreover, the molecular mechanisms underlying retinoid effects on lipid metabolism are complex and remain incompletely understood. Here, we present a brief overview of mammalian lipid metabolism and its control, introduce mechanisms through which retinoids can impact on lipid metabolism, and review reported activities of retinoids on different aspects of lipid metabolism in key tissues, focusing on retinoic acid. Possible implications of this knowledge in the context of the management of obesity and the metabolic syndrome are also addressed. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.  相似文献   
5.

Introduction

Long-chain polyunsaturated (LCP) fatty acids (FA) are important during infant development. Mother-to-infant FA-transport occurs at the expense of the maternal status. Maternal and infant FA-status change rapidly after delivery.

Methods

Comparison of maternal (mRBC) and infant erythrocyte (iRBC)-FA-profiles at delivery and after 3 months exclusive breastfeeding in relation to freshwater-fish intakes. Approximation of de-novo-lipogenesis (DNL), stearoyl-CoA-desaturase (SCD), elongation-of-very-long-chain-FA-family-member-6 (Elovl-6), delta-5-desaturase (D5D) and delta-6-desaturase (D6D)-enzymatic activities from their product/essential-FA and product/substrate-ratios.

Results and discussion

Increasing iRBC-14:0 derived from mammary-gland DNL. Decreasing mRBC-ω9, but increasing iRBC-ω9, suggest high ω9-FA-transfer via breastmilk. Decreasing (m+i)RBC-16:0, DNL- and SCD-activities, but increasing (m+i)RBC-18:0 and Elovl-6-activity suggest more pronounced postpartum decreases in DNL- and SCD-activities, compared to Elovl-6-activity. Increasing (m+i)RBC-18:3ω3, 20:5ω3, 22:5ω3, 18:2ω6, mRBC-20:4ω6 and (m+i)D5D-activity, but decreasing mRBC-22:6ω3 and (m+i)D6D-activity and dose-dependent changes in iRBC-22:6ω3 confirm that D6D-activity is rate-limiting and 22:6ω3 is important during lactation. Fish-intake related magnitudes of postpartum FA-changes suggest that LCPω3 influence DNL-, SCD- and desaturase-activities.  相似文献   
6.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号