首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  1988年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   
2.
3.
D J Paulson  K M Ward  A L Shug 《FEBS letters》1984,176(2):381-384
The isolated beta 2-dimer of Escherichia coli tryptophan synthase exhibits reversible high-pressure deactivation and hybridization with an equilibrium transition at 690 and 870 bar for the apoenzyme and holoenzyme, respectively. To investigate the hypothetical dissociation mechanism ultracentrifugal analysis has been applied. In a conventional swing-out rotor (r(max) = 16 cm, fill-height 9 cm) a pressure gradient of 1 less than p less than 1840 bar is formed at maximum speed (40 000 rpm). Using a sucrose gradient to stabilize the particle distribution, pressure-dependent alterations of the state of association of oligomeric systems may be determined. In the present experiments ovalbumin (with a molecular mass close to the beta-monomer) has been used as a reference. The radial sedimentation velocity of the beta 2-dimer (in 5-20% sucrose, 10 degrees C) is found to decrease significantly at p approximately equal to 850 bar. From the slopes in an r-r(degrees) vs t plot the limiting values for the particle weight at the meniscus and the bottom of the tube are found to be the beta 2-dimer (M(r) = 85 800) and the beta-monomer (M(r) = 42 900), thus proving pressure-dependent dissociation. Since sucrose stabilizes the native quaternary structure, the beta 2 leads to 2 beta transition is shifted towards higher pressures compared to the dissociation in standard buffer. Conventional quench experiments in high-pressure cells in the presence of 13% (w/v) sucrose confirm the result of the sucrose gradient centrifugation with respect to the critical pressure where deactivation (and dissociation) occur.  相似文献   
4.
Energetically-coupled processes (electron flow, proton uptake and correlated pH gradient) were investigated on envelope-free chloroplasts of lettuce suspended in 1H2O or 2H2O media. Study of the light-intensity and temperature dependencies of these phenomena led to the following observations: 1. At neutral pH, 2H2O diminishes the transmembrane H+ gradient in strong light (chain Photosystem II + Photosystem I) but not in low light; the total H+ uptake is increased at all light intensities: the buffering capacity of the inner compartment is increased in heavy water, possibly through enhancement of interactions between membranous titrable groups and the aqueous phase. 2. 2H2O does not affect the photochemical events of the redox chain, whatever the electron pathway (PSII, PSI or PSII + PSI): only thermal steps are inhibited. The diminution of the apparent quantum yield, sometimes observed, may be ascribed to the dual site of action of the artificial redox carrier (ferricyanide) then used. 3. 2H2O does not modify the activation energy of the limiting step of the electron flow (PSII + PSI) in uncoupled (44 vs. 47 kJ · mol?1) or — but less clearly — in coupled, i.e., ‘basal’, state (55 vs. 59 kJ · mol?1). 2H2O does not either change the temperature of the phase transition of the membrane (17°C) for the uncoupled flow. However, a low-temperature transition, observed only for the coupled chain, is slightly increased by 2H2O; this thermal transition is attributed to the freezing of some bound water near the plastoquinone pool. 4. Δp2H is smaller than Δp1H at all temperatures (PSII + PSI chain). ΔpH is quasi-constant from 0°C to 10°C, then decreases when temperature rises. 2H2O does not change the activation energy of the dark passive H+ efflux, which is almost twice that of the coupled electron flow. The phase transition at low temperature suggests that the proton efflux occurs via two parallel pathways, one temperature-dependent and the other temperature-independent. Except for the increase of the internal buffering capacity, the effects of 2H2O on the membrane conformation seem limited, as shown by the unchanged activation energies of the electron flow and of the H+ leakage. The null activation energy observed at low temperature emphasizes the role of the bound water in these processes; however, the different effects of 2H2O on the transition temperatures indicate that this bound water has different properties when associated with the translocation sites or with the H+ leakage ones. This ‘microcompartmentation’ of the membranes is consistent with the concept of lateral pH heterogeneity we have previously suggested (de Kouchkovsky, Y., and Haraux, F. (1981) Biochem. Biophys. Res. Commun. 99, 205–212). The theoretical computations and the experimental results suggest that in the steady state, the internal pH would be several tenths of a ‘unit’ lower near the plastoquinones than near the H+ efflux sites (coupling factors); this difference would be increased when 2H+ replaces 1H+, owing to the lower mobility of the deuteron. It is concluded that local, and not average, pH (and ΔpH) should be considered for the understanding of the energy transduction processes.  相似文献   
5.
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.  相似文献   
6.
7.
We have isolated from a lambda Ch4A library four human genomic DNA segments containing H1 histone genes. Analysis of the representation and organization of histone coding sequences indicates that three of these cloned DNA segments contain both core and H1 histone genes. One of the cloned human H1 histone genes has no core histone genes in close proximity.  相似文献   
8.
Susan Flores  Donald R. Ort 《BBA》1984,766(2):289-302
The maximum phosphorylation efficiency achieved with synchronous turnovers of Photosystem II (PS II) in spinach chloroplast lamellae is 0.3 molecules of ATP per pair of electrons transferred. This is the same as the efficiency observed for PS II operating alone in continuous light and would seem to indicate less than 50% coupling efficiency. Flash-induced ATP synthesis associated with both photosystems acting in unison closely approaches twice the flash-induced ATP synthesis associated with the Photosystem-I-dependent oxidation of duroquinol (itself 0.6) and comes close to equalling the highest efficiency observed in steady-state PS I + PS II electron transport. The anomalously low coupling efficiency seen when PS II is operating alone can be overcome by a ΔpH of two units imposed before flash illumination, or by a prior flash series involving the entire electron transfer chain. In contrast, prior electron transport through PS II alone is only slightly effective in enhancing the coupling efficiency of subsequent PS II turnovers. (It should be noted that in all cases where supplementary energy was provided, either by a proton gradient or by prior illumination, this supplementary energy was always below the energetic threshold for phosphorylation. Furthermore, the enhancement of PS II coupling efficiency by supplementary energy persisted even after a large number of subsequent PS II-inducing flashes). The efficiency of flash-induced ATP synthesis associated with whole-chain electron transfer or with PS-I-dependent duroquinol oxidation is also enhanced by the supplementary energy, but only during the first few inefficient flashes, suggesting that in this case the supplementary energy may simply be contributing to the initial build-up of an energetic threshold for ATP synthesis. This cannot be the case when the same supplementary energy contributes to the efficiency of the PS II reaction, since the enhancement then persists for a long time and contributes to an essentially constant flash yield of ATP. Our results imply that during electron transfer involving both photosystems, PS II participates in generating about half of the total ATP, whereas it operates inefficiently only when operating alone. Since hydrogen ions produced by PS I are able to raise the efficiency of subsequent PS-II-dependent phosphorylation, at least some cooperation between the two photosystems takes place and this suggests some donation of protons from PS I to PS II. However, the inability of PS II alone to achieve high efficiency, even with prolonged pre-illumination, would seem to indicate some functional distinction of protons from the two photosystems.  相似文献   
9.
Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled.  相似文献   
10.
Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1 = SkQR1 > SkQ3 > MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H2O2-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H2O2 or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53−/− mice, 5 nmol/kg × day SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号