首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2014年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  1982年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc]2 and colloidal chitin. Mutant W397F was the only exception, as it instead enhanced the hydrolysis of the pNP substrate to 142% and gave no activity loss towards colloidal chitin. The kinetic study with the pNP substrate demonstrated that the mutations caused impaired Km and kcat values of the enzyme. A chitin binding assay showed that mutations of the aromatic residues did not change the binding equilibrium. Product analysis by thin layer chromatography showed higher efficiency of W275G and W397F in G4–G6 hydrolysis over the wild type enzyme. Though the time course of colloidal chitin hydrolysis displayed no difference in the cleavage behavior of the chitinase variants, the time course of G6 hydrolysis exhibited distinct hydrolytic patterns between wild-type and mutants W275G and W397F. Wild type initially hydrolyzed G6 to G4 and G2, and finally G2 was formed as the major end product. W275G primarily created G2–G5 intermediates, and later G2 and G3 were formed as stable products. In contrast, W397F initially produced G1–G5, and then the high-Mr intermediates (G3–G5) were broken down to G1 and G2 end products. This modification of the cleavage patterns of chitooligomers suggested that residues Trp275 and Trp397 are involved in defining the binding selectivity of the enzyme to soluble substrates.  相似文献   
2.
3.
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125–129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.  相似文献   
4.
Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 Å) and in complex with acarbose (to 1.9 Å). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.  相似文献   
5.
It has long been known that liver lysosomes contain an endoglycosidase activity able to degrade the high molecular mass glycosaminoglycan hyaluronic acid (HA). The identification and cloning of a hyaluronidase with an acidic pH optimum, Hyal-1, suggested it might be responsible for this activity. However, we previously reported that this hydrolase could only be detected in pre-lysosomal compartments of the mouse liver using a zymography technique that allows the detection of Hyal-1 activity after SDS–PAGE (“renatured protein zymography”). Present work reveals that the activity highlighted by this technique belongs to a precursor form of Hyal-1 and that the lysosomal HA endoglycosidase activity of the mouse liver is accounted for by a proteolytically processed form of Hyal-1 that can only be detected using “native protein zymography”. Indeed, the distribution of this form follows the distribution of β-galactosidase, a well-established lysosomal marker, after fractionation of the mouse liver in a linear sucrose density gradient. In addition, both activities shift toward the lower density region of the gradient when a specific decrease of the lysosomal density is induced by Triton WR-1339 injection. The fact that only native protein zymography but not renatured protein zymography is able to detect Hyal-1 activity in lysosomes points to a non-covalent association of Hyal-1 proteolytic fragments or the existence of closely linked partners supporting Hyal-1 enzymatic activity. The knockdown of Hyal-1 results in an 80% decrease of total acid hyaluronidase activity in the mouse liver, confirming that Hyal-1 is a key actor of HA catabolism in this organ.  相似文献   
6.
Chronic arsenic exposure causes oxidative stress and mitochondrial dysfunction in the liver and brain. The ideal treatment would be to chelate arsenic and prevent oxidative stress. meso-2,3-Dimercaptosuccinic acid (DMSA) is used to chelate arsenic but its hydrophilicity makes it membrane-impermeative. Conversely, quercetin (QC) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, and it is not possible to solubilize these two compounds in a single nontoxic solvent. Nanocapsules have emerged as a potent drug delivery system and make it feasible to incorporate both hydrophilic and lipophilic compounds. Nanoencapsulated formulations with QC and DMSA either alone or coencapsulated in polylactide-co-glycolide [N(QC+DMSA)] were synthesized to explore their therapeutic application in a rat model of chronic arsenic toxicity. These treatments were compared to administration of quercetin or DMSA alone using conventional delivery methods. Both nanoencapsulated quercetin and nanoencapsulated DMSA were more effective at decreasing oxidative injury in liver or brain compared to conventional delivery methods, but coencapsulation of quercetin and DMSA into nanoparticles had a marked synergistic effect, decreasing liver and brain arsenic levels from 9.5 and 4.8μg/g to 2.2 and 1.5μg/g, respectively. Likewise, administration of coencapsulated quercetin and DMSA virtually normalized changes in mitochondrial function, formation of reactive oxygen species, and liver injury. We conclude that coencapsulation of quercetin and DMSA may provide a more effective therapeutic strategy in the management of arsenic toxicity and also presents a novel way of combining hydrophilic and hydrophobic drugs into a single delivery system.  相似文献   
7.
Administration of hepatocarcinogens to rats results in an increase in tRNA methyltransferase activity in the target tissues. Ethionine is active as a carcinogen only in female rats and only in females is this increase in enzyme activity seen. However, ethionine also causes the formation of methyl-deficient tRNA in the liver. Other hepatocarcinogens do not do this. Ethionine is equally effective in this action in males and females. Thus, the two actions of ethionine are completely separable, and the methyl-deficiency of tRNA is caused by an activity not identical with the carcinogenic one.  相似文献   
8.
9.
Rat liver mitochondrial d-β-hydroxybutyrate dehydrogenase has an absolute requirement for lecithin. The nature of the interaction between the enzyme and phospholipid has been investigated. Single bilayer lecithin liposomes of shell-like structure bring about maximal enzyme activation, whereas the interaction with larger vesicles leads to enzyme inactivation. The strong binding of the enzyme to lecithin confers great stability to the enzyme activity as compared with the nonlipid-activated enzyme, and permits the isolation of a lipoprotein complex by chromatography on Sephadex G-200. Only 20% of the proteins solubilized with d-β-hydroxybutyrate dehydrogenase from mitochondrial membranes bind to lecithin liposomes, thus a 5-fold purification of the enzyme is achieved. The liposome-bound proteins had a significantly lower polarity than the remaining 80% of solubilized mitochondrial membrane proteins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号