首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
2.
The population dynamics, genotypic diversity and activity of naturally-occurring 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. was investigated for four plant species (wheat, sugar beet, potato, lily) grown in two different soils. All four plant species tested, except lily and in some cases wheat, supported relatively high rhizosphere populations (5 x 10(4) to 1 x 10(6) CFU/g root) of indigenous DAPG-producing Pseudomonas spp. during successive cultivation in both a take-all suppressive and a take-all conducive soil. Although lily supported on average the highest population densities of fluorescent Pseudomonas spp., it was the least supportive of DAPG-producing Pseudomonas spp. of all four plant species. The genotypic diversity of 492 DAPG-producing Pseudomonas isolates, assessed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis of the phlD gene, revealed a total of 7 genotypes. Some of the genotypes were found only in the rhizosphere of a specific plant, whereas the predominant genotypes were found at significantly higher frequencies in the rhizosphere of three plant species (wheat, sugar beet and potato). Statistical analysis of the phlD(+) genotype frequencies showed that the diversity of the phlD(+) isolates from lily was significantly lower than the diversity of phlD(+) isolates found on wheat, sugar beet or potato. Additionally, soil type had a significant effect on both the phlD(+) population density and the phlD(+) genotype frequencies, with the take-all suppressive soil being the most supportive. HPLC analysis further showed that the plant species had a significant effect on DAPG-production by the indigenous phlD(+) population: the wheat and potato rhizospheres supported significantly higher amounts of DAPG produced per cell basis than the rhizospheres of sugar beet and lily. Collectively, the results of this study showed that the host plant species has a significant influence on the dynamics, composition and activity of specific indigenous antagonistic Pseudomonas spp.  相似文献   
3.
Plant interactions with plant growth-promoting rhizobacteria (PGPR) are highly dependent on plant genotype. Modern plant breeding has largely sought to improve crop performance but with little focus on the optimization of plant × PGPR interactions. The interactions of the model PGPR strain Pseudomonas kilonensis F113 were therefore compared in 199 ancient and modern wheat genotypes. A reporter system, in which F113 colonization and expression of 2,4-diacetylphloroglucinol biosynthetic genes (phl) were measured on roots was used to quantify F113 × wheat interactions under gnotobiotic conditions. Thereafter, eight wheat accessions that differed in their ability to interact with F113 were inoculated with F113 and grown in greenhouse in the absence or presence of stress. F113 colonization was linked to improved stress tolerance. Moreover, F113 colonization and phl expression were higher overall on ancient genotypes than modern genotypes. F113 colonization improved wheat performance in the four genotypes that showed the highest level of phl expression compared with the four genotypes in which phl expression was lowest. Taken together, these data suggest that recent wheat breeding strategies have had a negative impact on the ability of the plants to interact with PGPR.  相似文献   
4.
The exponential substrate feeding (open-loop) and automated feedback substrate feeding (closed loop) strategies were developed to obtain high cell densities of fluorescent pseudomonad strains R62 and R81 and enhanced production of antifungal compound 2,4-diacetylphloroglucinol (DAPG) from glycerol as a sole carbon source. The exponential feeding strategy resulted in increased glycerol accumulation during the fed-batch cultivation when the predetermined specific growth rate (μ) was set at 0.10 or 0.20 h?1 (<μm = 0.29 h?1). Automated feeding strategies using dissolved oxygen (DO) or pH as feedback signals resulted in minimal to zero accumulation of glycerol for both the strains. In case of DO-based feeding strategy, biomass productivity of 0.24 g/(L h) and 0.29 g/(L h) was obtained for R62 and R81, respectively. Using pH-based feeding strategy, biomass productivity could be increased to a maximum of 0.51 and 0.54 g/(L h), for the strains R62 and R81, respectively, whereas the DAPG concentration was enhanced to 298 mg/L for R62 and 342 mg/L for R81 strains. These yields of DAPG are thus far the highest reported from GRAS organisms.  相似文献   
5.
Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) play a key role in the suppressiveness of some soils to take-all of wheat and other diseases caused by soilborne pathogens. Soils from side-by-side fields on the campus of North Dakota State University, Fargo, USA, which have undergone continuous wheat, continuous flax or crop rotation for over 100 years, were assayed for the presence of 2,4-DAPG producers. Flax and wheat monoculture, but not crop rotation, enriched for 2,4-DAPG producers, and population sizes of log 5.0 CFU g root(-1) or higher were detected in the rhizospheres of wheat and flax grown in the two monoculture soils. The composition of the genotypes enriched by the two crops differed. Four BOX-PCR genotypes (D, F, G, and J) and a new genotype (T) were detected among the 2,4-DAPG producers in the continuous flax soil, with F- and J-genotype isolates dominating (41 and 39% of the total, respectively). In contrast, two genotypes (D and I) were detected in the soil with continuous wheat, with D-genotype isolates comprising 77% of the total. In the crop-rotation soil, populations of 2,4-DAPG producers generally were below the detection limit, and only one genotype (J) was detected. Under growth-chamber and field conditions, D and I genotypes (enriched by wheat monoculture) colonized the wheat rhizosphere significantly better than isolates of other genotypes, while a J-genotype isolate colonized wheat and flax rhizospheres to the same extent. This study suggests that, over many years of monoculture, the crop species grown in a field enriches for genotypes of 2,4-DAPG producers from the reservoir of genotypes naturally present in the soil that are especially adapted to colonizing the rhizosphere of the crop grown.  相似文献   
6.
We find out the antimicrobial potential of partially purified 2,4-diacetylphloroglucinol (DAPG) against Ralstonia solanacearum and fungal plant pathogens isolated from tomato rhizobacterium Pseudomonas fluorescens VSMKU3054. The present study is mainly focused on the control of wilt disease of tomato by our isolate VSMKU3054 and DAPG. The cell free culture filtrate of P. fluorescens VSMKU3054 was significantly arrested the growth of R. solanacearum and fungal pathogens such as Rhizoctonia solani, Sclerotium rolfsii, Macrophomina phaseolina and Fusarium oxysporum compared to control. The existence of DAPG from the crude metabolites of P. fluorescens VSMKU3054 was confirmed on TLC with Rf value 0.34, which is coincide with that of authentic phloroglucinol. The partially purified DAPG exhibited much higher activity against R. solanacearum at 30 µg/ml than the fungal plant pathogens compared to control. The antimicrobial partially purified compound was identified as DAPG by UV, FT-IR and GC–MS analysis. The percentage of live cells of R. solanacearum when supplemented with DAPG at 30 µg/ml, significantly controlled the living nature of R. solanacearum up to 68% compared to tetracycline and universal control observed under high content screening analysis. The selected isolate P. fluorescens VSMKU3054 and DAPG significantly controlled wilt disease of tomato up to 59.5% and 42.12% on 3rd and 7th days compared to positive and negative control by detached leaf assay. Further, in silico analysis revealed that high interaction of DAPG encoding protease with lectin which is associated with R. solanacearum. Based on our findings, we confirmed that P. fluorescens VSMKU3054 and DAPG could be used a potential bio inoculants for the management of bacterial wilt disease of tomato.  相似文献   
7.
8.
Pseudomonas strains producing antimicrobial secondary metabolites play an important role in the biocontrol of phytopathogenic fungi. In this study, native Pseudomonas spp. isolates were obtained from the rhizosphere, endorhizosphere and bulk soil of maize fields in Córdoba (Argentina) during both the vegetative and reproductive stages of plant growth. However, the diversity based on repetitive-element PCR (rep-PCR) and amplified ribosomal DNA restriction analysis (ARDRA) fingerprinting was not associated with the stage of plant growth. Moreover, the antagonistic activity of the native isolates against phytopathogenic fungi was evaluated in vitro. Several strains inhibited members of the genera Fusarium, Sclerotinia or Sclerotium and this antagonism was related to their ability to produce secondary metabolites. A phylogenetic analysis based on rpoB or 16S rRNA gene sequences confirmed that the isolates DGR22, MGR4 and MGR39 with high biocontrol potential belonged to the genus Pseudomonas. Some native strains of Pseudomonas were also able to synthesise indole acetic acid and to solubilise phosphate, thus possessing potential plant growth-promoting (PGPR) traits, in addition to their antifungal activity. It was possible to establish a relationship between PGPR or biocontrol activity and the phylogeny of the strains. The study allowed the creation of a local collection of indigenous Pseudomonas which could be applied in agriculture to minimise the utilisation of chemical pesticides and fertilisers.  相似文献   
9.
The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor, or H. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. These data indicate that P. fluorescens strain Wood1R has the capacity to inhibit some populations of plant-parasitic nematodes. However, consistent suppression of nematodes in natural soils seems unlikely.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号