首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Summary The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b0,+ -like and y+L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b0,+-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (~20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.  相似文献   
2.
S. S. Tate 《Amino acids》1996,11(2):209-224
Summary Cystinuria, one of the most common genetic disorders, is characterized by excessive excretion of cystine and basic amino acids in urine. The low solubility of cystine results in formation of kidney stones which can eventually lead to renal failure. Three types of cystinurias have been described. All involve defects in a high-affinity transport system for cystine in the brush border membranes of kidney and intestinal epithelial cells. The molecular properties of proteins involved in epithelial cystine transport are incompletely understood. A protein (NBAT, neutral and basic amino acid transporter), initially cloned by us from rat kidney and shown to be localized in the renal and intestinal brush border membranes, has been implicated in this transport, and mutations in human NBAT gene have been found in several cystinurics, making it a prime candidate for a cystinuria gene. However, mutations in NBAT were found only in Type I cystinurics and not in Types II and III suggesting that defects in other, as yet uncharacterized, genes may also be involved. NBAT has an unusual (for an amino acid transporter) membrane topology. We proposed that the protein contains four membrane-spanning domains, a model disputed by other investigators. We subsequently obtained experimental data consistent with a four membrane-spanning domain model. Furthermore, recently we showed that kidney and intestinal NBAT (85kDa) is associated with another brush border membrane protein (about 50kDa) and have proposed that the heterodimer represents the minimal functional unit of the high-affinity cystine transporter in these membranes. These findings raise the tantalizing possibilities that defects in the NBAT-associated protein might account for cystinurias in individuals with normal NBAT gene (such as the Types II and III cystinurics).  相似文献   
3.
New Glycoprotein-Associated Amino Acid Transporters   总被引:2,自引:0,他引:2  
The L-type amino acid transporter LAT1 has recently been identified as being a disulfide-linked ``light chain' of the ubiquitously expressed glycoprotein 4F2hc/CD98. Several LAT1-related transporters have been identified, which share the same putative 12-transmembrane segment topology and also associate with the single transmembrane domain 4F2hc protein. They display differing amino acid substrate specificities, transport kinetics and localizations such as, for instance, y+LAT1 which is localized at the basolateral membrane of transporting epithelia, and the defect of which causes lysinuric protein intolerance. The b0,+AT transporter which associates with the 4F2hc-related rBAT protein to form the luminal high-affinity diamino acid transporter defective in cystinuria, belongs to the same family of glycoprotein-associated amino acid transporters (gpaATs). These glycoprotein-associated transporters function as amino acid exchangers. They extend the specificity range of vectorial amino acid transport when located in the same membrane as carriers that unidirectionally transport one of the exchanged substrates. gpaATs belong to a phylogenetic cluster within the amino acid/polyamine/choline (APC) superfamily of transporters. This cluster, which we designate the LAT family (named after its first vertebrate member), includes some members from nematodes, yeast and bacteria. The latter of these proteins presumably lack association with a second subunit. In this review, we focus on the animal members of the LAT cluster that form, together with some of the nematode members, the family of glycoprotein-associated amino acid transporters (gpaAT family). Received: 20 July 1999/Revised: 7 September 1999  相似文献   
4.
We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.  相似文献   
5.
To overcome the chemical and metabolic stability issues of l-cystine dimethyl ester (CDME) and l-cystine methyl ester (CME), a series of l-cystine diamides with or without Nα-methylation was designed, synthesized, and evaluated for their inhibitory activity of l-cystine crystallization. l-Cystine diamides 2ai without Nα-methylation were found to be potent inhibitors of l-cystine crystallization while Nα-methylation of l-cystine diamides resulted in derivatives 3bi devoid of any inhibitory activity of l-cystine crystallization. Computational modeling indicates that Nα-methylation leads to significant decrease in binding of the l-cystine diamides to l-cystine crystal surface. Among the l-cystine diamides 2ai, l-cystine bismorpholide (CDMOR, LH707, 2g) and l-cystine bis(N′-methylpiperazide) (CDNMP, LH708, 2h) are the most potent inhibitors of l-cystine crystallization.  相似文献   
6.
Summary. Proton Nuclear Magnetic Resonance (NMR) Spectroscopy of urine (as well as of other biological fluids) is a very powerful technique enabling multi-component analysis useful in both diagnosis and follow-up of a wide range of inherited metabolic diseases. Among these pathologies, cystinuria is characterised by accumulation in urine of four dibasic amino acids, namely lysine, arginine, ornithine and cystine; the last one, being only slightly water soluble, generates urolithiasis. The mentioned aminoacids can be detected in the urine NMR spectrum of cystinuric patients, the most abundant being the lysine (5 mM and over are often detected), whose typical signals become very high; arginine and ornithine are also usually detectable, although pathologic concentrations are lower (usually below 2 mM). The proposed NMR technique is also suitable in monitoring the therapy with α-mercaptopropionylglycine (MPG), providing quantitation of several metabolites of interest in the follow-up of the pathology, like cystine, creatinine and citrate. Received May 9, 1999; Accepted September 26, 1999  相似文献   
7.
Structure-function relationships of heterodimeric amino acid transporters   总被引:7,自引:0,他引:7  
Heterodimeric amino acid transporters mediate the transfer of amino acids between organs and between different cell types. Members of this particular family of amino acid transporters are constituted by a heavy chain and an associated light chain. The heavy chain is a type II membrane protein with an intracellular amino terminus, a single transmembrane helix, and a large extracellular domain. The light chain, in contrast, is a typical helix-bundle protein with 12 putative transmembrane helices. Two different heavy chains, designated 4F2hc and rbAT, and seven different light chains have been identified to date. Deletion studies indicate that the extracellular domain of the heavy chain has two subdomains. The carboxy-terminal tip of 4F2hc is critical for recognition of certain light chains, whereas the carboxy-terminal tip of rbAT is involved in substrate transport. Sequence alignments suggest that the major part of the extracellular domain forms an α/β domain similar to bacterial α-amylases. A structural model of the rbAT extracellular domain is presented that is in agreement with experimental observations from several mutations and that aligns well with the α-amylase domain.  相似文献   
8.
Amino acid transport in mammalian plasma membranes is mediated by a multiplicity of amino acid transport systems. Some of them (systems L, y+L, xc- and bo,+) are the result of the activity of heteromeric amino acid transporters (HAT) (i.e. transport activity is elicited by the coexpression of a heavy and a light subunit). The two heavy subunits known today (HSHAT: rBAT and 4F2hc) were identified in 1992, and light subunits (LSHAT: LAT-1, LAT-2, asc-1, y+LAT-1, y+LAT-2, xCT and bo,+AT) have been cloned in the last 2 years. Defects in two genes of this family (SLC3A1, encoding rBAT and SLC7A9, encoding bo,+AT) are responsible for cystinuria, an inherited aminoaciduria of cystine and dibasic amino acids. This finding and functional studies of rBAT and bo,+AT suggested that these two proteins encompassed the high-affinity renal reabsorption system of cystine. In contrast to this view, immunofluorescence studies showed that rBAT is most abundant in the proximal straight tubule, and bo,+AT is most abundant in the proximal convoluted tubule of the nephron. The need for a newlight subunit for rBAT and a heavy subunit for bo,+AT is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号