首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   1篇
  国内免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   12篇
  2012年   2篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
We investigated the effects of pedal speed on changes in plasma volume, electrolytes and protein during incremental exercise. Ten adult males participated in two, 30 minute incremental cycle ergometer exercise tests at room temperature (22° C, rh=56%). Exercise load was increased from 20 to 70% of peak . Five minutes were spent at each of six stages which were equally spaced in exercise intensity. Subjects pedaled at 50 (50 RPM) and 90 (90 RPM) rev · min–1. Venous blood samples were drawn prior to exercise and during the last minute of each stage. Relative plasma volume changes showed a progressive hemoconcentration during the exercise. There were no significant differences due to pedal speed as plasma volume loss averaged –7.3% during exercise. [Na+], [Cl–], and [K+] increased significantly during exercise but were not influenced by pedal speed. Changes in plasma protein and albumin concentrations indicated that there was a loss of globulin from the vascular volume in both conditions and an addition of albumin to the plasma in 50 RPM. The difference in plasma albumin dynamics was possibly related to an effect of pedal speed on movement of fluid in the lymphatic vessels of the legs.This work was supported in part by Grants from the Theresa Monaco Endowment of the University of Houston College of Education and Nautilus Sports/Medical Industries  相似文献   
2.
The position of the body and use of the respiratory muscles in the act of rowing may limit ventilation and thereby reduce maximal aerobic power relative to that achieved in cycling or running, in spite of the greater muscle mass involved in rowing. This hypothesis was investigated for three groups of male subjects: nine elite senior oarsmen, eight former senior oarsmen and eight highly trained athletes unskilled in rowing. The subjects performed graded exercise to maximal effort on a rowing ergometer, cycle ergometer and treadmill while respiratory minute volume and oxygen consumption were monitored continuously. The VE at a given during intense submaximal exercise (greater than 75% of maximal ) was not significantly lower in rowing compared with that in cycling and treadmill running for any group, which would suggest that submaximal rowing does not restrict ventilation. At maximal effort, and for rowing were less than those for the other types of exercise in all the groups, although the differences were not statistically significant in the elite oarsmen. These data are consistent with a ventilatory limitation to maximal performance in rowing that may have been partly overcome by training in the elite oarsmen. Alternatively, a lower maximal VE in rowing might have been an effect rather than a cause of a lower maximal if maximal was limited by the lower rate of muscle activation in rowing.  相似文献   
3.
D. C. Morgan  R. Child  H. Smith 《Planta》1981,151(5):497-498
In background white light, supplementary far-red (max 700 nm) is an order of magnitude less effective than supplementary far-red (max 739 nm) in the stimulation of stem extension in Sinapis alba. The relationship between phytochrome photoequilibrium and extension rate increase for the two supplementary far-red treatments is, however, very similar. This evidence indicates that phytochrome cycling is not involved in the phytochrome control of stem extension in light-grown Sinapis alba and that the response to supplementary far-red light is not fluence rate (irradiance) dependent.Abbreviations Pfr far-red absorbing form of phytochrome - the phytochrome photoequilibrium (Pfr/Ptotal)  相似文献   
4.
The present study was designed to evaluate time-of-day effects on electromyographic (EMG) activity changes during a short-term intense cycling exercise. In a randomized order, 22 male subjects were asked to perform a 30-s Wingate test against a constant braking load of 0.087?kg·kg?1 body mass during two experimental sessions, which were set up either at 07:00 or 17:00?h. During the test, peak power (Ppeak), mean power (Pmean), fatigue index (FI; % of decrease in power output throughout the 30 s), and evolution of power output (5-s span) throughout the exercise were analyzed. Surface EMG activity was recorded in both the vastus lateralis and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root mean square (RMS) and mean power frequency (MPF) of EMG were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Resting core temperature, Ppeak, Pmean, and FI were significantly higher (p?<?.05) in the evening than morning test (e.g., Ppeak: 11.6?±?0.8 vs. 11.9?±?1 W·kg?1). The results showed that power output decreased following two phases. During the first phase (first 20s), power output decreased rapidly and values were higher (p?<?.05) in the evening than in the morning. During the second phase (last 10s), power decreased slightly and appeared independent of the time of day of testing. This power output decrease was paralleled by evolution of the MPF and NME. During the first phase, NME and MPF were higher (p <?.05) in the evening. During the second phase, NME and MPF were independent of time of day. In addition, no significant differences were noticed between 7:00 and 17:00?h for EMG RMS during the whole 30 s. Taken together, these results suggest that peripheral mechanisms (i.e., muscle power and fatigue) are more likely the cause of the diurnal variation of the Wingate-test performance rather than central mechanisms. (Author correspondence: )  相似文献   
5.
Physiological and biomechanical constraints as well as their fluctuations throughout the day must be considered when studying determinant factors in the preferred pedaling rate of elite cyclists. The aim of this study was to monitor the diurnal variation of spontaneous pedaling rate and movement kinematics over the crank cycle. Twelve male competitive cyclists performed a submaximal exercise on a cycle ergometer for 15 min at 50% of their Wmax. Two test sessions were performed at 06:00 and 18:00 h on two separate days to assess diurnal variation in the study variables. For each test session, the exercise bout was divided into three equivalent 5‐min periods during which subjects were requested to use different pedal rates (spontaneous cadence, 70 and 90 rev min?1). Pedal rate and kinematics data (instantaneous pedal velocity and angle of the ankle) were collected. The results show a higher spontaneous pedal rate in the late afternoon than in the early morning (p < 0.001). For a given pedal rate condition, there was a less variation in pedal velocity during a crank cycle in the morning than in the late afternoon. Moreover, diurnal variations were observed in ankle mobility across the crank cycle, the mean plantar flexion observed throughout the crank cycle being greater in the 18:00 h test session (p < 0.001). These results suggest that muscular activation patterns during a cyclical movement could be under the influence of circadian fluctuations.  相似文献   
6.
The aim of this study was to follow the circadian fluctuation of the spontaneous pedal rate and the motor spontaneous tempo (MST) in a sample of highly trained cyclists. Ten subjects performed five test sessions at various times of day. During each test session, subjects were required to perform (i) a finger-tapping task, in order to set the MST and (ii) a submaximal exercise on a cycle ergometer for 15 min at 50% of their Wmax. For this exercise, pedal rate was freely chosen. Spontaneous pedal rate and heart rate (HR) were measured continuously.

The results demonstrated a circadian variation for mean oral temperature, HR, and MST. Under submaximal exercise conditions, HR showed no significant time-of-day influence although spontaneous pedal rate changed significantly throughout the day. Circadian rhythm of oral temperature and pedal rate were strongly correlated. Moreover, a significant positive correlation was found between MST and pedal rate. Both parameters may be controlled by a common brain oscillator. MST, rest HR, and pedal rate changes follow the rhythm of internal temperature, which is considered to be the major marker in chronobiology, therefore, if there is a relation between MST and pedal rate, we cannot rule out partial dependence of both parameters on body temperature.  相似文献   
7.
We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.  相似文献   
8.
Recently, it was observed that the freely chosen pedal rate of elite cyclists was significantly lower at 06:00 than at 18:00 h, and that ankle kinematics during cycling exhibits diurnal variation. The modification of the pedaling technique and pedal rate observed throughout the day could be brought about to limit the effect of diurnal variation on physiological variables. Imposing a pedal rate should limit the subject's possibility of adaptation and clarify the influence of time of day on physiological variables. The purpose of this study was to determine whether diurnal variation in cardiorespiratory variables depends on pedal rate. Ten male cyclists performed a submaximal 15 min exercise on a cycle ergometer (50% Wmax). Five test sessions were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. The exercise bout was divided into three equivalent 5 min periods during which different pedal rates were imposed (70 rev · min-1, 90 rev · min-1 and 120 rev · min-1). No significant diurnal variation was observed in heart rate and oxygen consumption, whatever the pedal rate. A significant diurnal variation was observed in minute ventilation (p=0.01). In addition, the amplitude of the diurnal variation in minute ventilation depended on pedal rate: the higher the pedal rate, the greater the amplitude of its diurnal variation (p=0.03). The increase of minute ventilation throughout the day is mainly due to variation in breath frequency (p=0.01)—the diurnal variation of tidal volume (all pedal rate conditions taken together) being non-significant—but the effect of pedal rate×time of day interaction on minute ventilation specific to the higher pedal rate conditions (p=0.03) can only be explained by the increase of tidal volume throughout the day. Even though an influence of pedal rate on diurnal rhythms in overall physiological variables was not also evidenced, high pedal rate should have been imposed when diurnal variations of physiological variables in cycling were studied.  相似文献   
9.
10.

Background

Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000?mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.

Scope of review

We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.

Major conclusions

Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.

General significance

The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号