首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   4篇
  国内免费   5篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   11篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   8篇
  2012年   5篇
  2011年   8篇
  2010年   9篇
  2009年   9篇
  2008年   13篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   7篇
  2003年   9篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   15篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   5篇
  1969年   1篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
1.
广西百色盆地更新世樟科两种植物角质层研究   总被引:3,自引:0,他引:3  
本文描述的具角质层的两块叶化石,产自广西百色盆地更新统长蛇岭组。经与现代植物的角质层对比研究后,确定这两块叶化石分属于樟科的两属两种,即油丹(近似种)(Alseoda-phne cf.hainanensis Merr.)和紫楠(近似种)[Phoebe cf.sheareri(Hemsl.)Gamble]。研究结果表明,角质层在鉴定被子植物化石中具有可靠的价值。  相似文献   
2.
The mechanism of oxidation of 1,2-dehydro-N-acetyldopamine (dehydro NADA) was examined to resolve the controversy between our group and Andersen's group regarding the reactive species involved in β-sclerotization. While Andersen has indicated that dehydro NADA quinone is the β-sclerotizing agent [Andersen, 1989], we have proposed quinone methides as the reactive species for this process [Sugumaran, 1987; Sugumaran, 1988]. Since dehydro NADA quinone has not been isolated or identified till to date, we studied the enzymatic oxidation of dehydro NADA in the presence of quinone traps to characterize this intermediate. Accordingly, both N-acetylcysteine and o-phenylenediamine readily trapped the transiently formed dehydro NADA quinone as quinone adducts. Interestingly, when the enzymatic oxidation was performed in the presence of o-aminophenol or different catechols, adduct formation between the dehydro NADA side chain and the additives had occurred. The structure of the adducts is in conformity with the generation and reactions of dehydro NADA quinone methide (or its radical). This, coupled with the fact that 4-hydroxyl or amino-substituted quinones instantly transformed into p-quinonoid structure, indicates that dehydro NADA quinone is only a transient intermediate and that it is the dehydro NADA quinone methide that is the thermodynamically stable product. However, since this compound is chemically more reactive due to the presence of both quinone methide and acylimine structure on it, the two side chain carbon atoms are “activated.” Based on these considerations, it is suggested that the quinone methide derived from dehydro NADA is the reactive species responsible for cross-link formation between dehydro NADA and cuticular components during β-sclerotization.  相似文献   
3.
The mechanism of formation of quinone methide from the sclerotizing precursor N-acetyldopamine (NADA) was studied using three different cuticular enzyme systems viz. Sarcophaga bullata larval cuticle, Manduca sexta pharate pupae, and Periplaneta americana presclerotized adult cuticle. All three cuticular samples readily oxidized NADA. During the enzyme-catalyzed oxidation, the majority of NADA oxidized became bound covalently to the cuticle through the side chain with the retention of o-diphenolic function, while a minor amount was recovered as N-acetylnorepinephrine (NANE). Cuticle treated with NADA readily released 2-hydroxy-3′,4′-dihydroxyacetophenone on mild acid hydrolysis confirming the operation of quinone methide sclerotization. Attempts to demonstrate the direct formation of NADA-quinone methide by trapping experiments with N-acetylcysteine surprisingly yielded NADA-quinone-N-acetylcysteine adduct rather than the expected NADA-quinone methide-N-acetylcysteine adduct. These results are indicative of NADA oxidation to NADA-quinone and its subsequent isomerization to NADA-quinone methide. Accordingly, all three cuticular samples exhibited the presence of an isomerase, which catalyzed the conversion of NADA-quinone to NADA-quinone methide as evidenced by the formation of NANE—the water adduct of quinone methide. Thus, in association with phenoloxidase, newly discovered quinone methide isomerase seems to generate quinone methides and provide them for quinone methide sclerotization.  相似文献   
4.
Summary Cuticle/water partition coefficients (Kc/w) for d-limonene, -pinene and -pinene were determined by an extrapolation and a desorption method. The sorption experiments were carried out with isolated angiosperm and gymnosperm cuticles and with [14C]-labelled monoterpenes, which were obtained biosynthetically. Both methods were suitable for the determination of the Kc/w of volatile hydrophobic compounds. For the angiosperm cuticles the partition coefficients are of the order of 104, which indicates a high accumulation of monoterpenes in the cuticle. The values of the conifer cuticles of Picea abies (L.) Karst. and Abies alba Mill., however, are lower due to their high lignin content. This is proved by the increase of the partition coefficients after removal of polar and phenolic components. The Kc/w can be estimated with good accuracy from the octanol/water partition coefficient, which was determined experimentally.  相似文献   
5.
Using the adult Calliphora bioassay, we found that the tanning hormone, bursicon, is present in the blood of pupal and adult Tenebrio only at the time of ecdysis, when it is released massively from the thoracic and abdominal central nervous system. The hormone's half life in the blood is short (about 1–2 h). Contrary to the findings of other workers, we could find no evidence for the presence of the hormone in the haemolymph during pharate adult development, before ecdysis begins. When newly ecdysed pupae were ligated about the neck, adult development of the thorax and abdomen proceeded normally, but postecdysial tanning of the adult cuticle was almost completely prevented. This failure to tan was not due to lack of bursicon as the hormone was released normally in the ligated animals at the time of ecdysis. This suggests that a pre-ecdysial signal may be required for the development of epidermal competence to respond to bursicon.  相似文献   
6.
Zusammenfassung Die Cuticula an der Innen- und Außenseite der Branchiostegite des Flußkrebses besteht wie für Arthropoden üblich aus Epi- und Procuticula. Sowohl die Epicuticula als auch die Procuticula von Innen- und Außenseite unterscheiden sich im Feinbau wesentlich voneinander. An der Innenseite ist die Epicuticula einfach gebaut; Die Procuticula ist lamelliert und zeigt meist die bogenförmigen Muster von Mikrofibrillen. Die Epicuticula an der Außenseite weist in den in dieser Arbeit untersuchten Entwicklungsstadien einen sehr viel komplizierteren Feinbau auf, der in der Entwicklung gewissen Änderungen unterliegt. In der wiederum lamellierten Procuticula an der Außenseite sind die Mikrofibrillen zu Balken gebündelt. Die Ausrichtung der Mikrofibrillen dreht sich innerhalb einer Lamelle um 180°. Durch die Procuticula ziehen Fortsätze der Epidermiszellen, außerdem Stäbe der sog. Verbindungsstrukturen.Die Bildung der Cuticula an der Innenseite konnte weitgehend vollständig verfolgt werden; sie ist gut mit der Bildung der Cuticula bei verschiedenen Insekten vergleichbar.Die Bildung der Cuticula an der Außenseite konnte dagegen nur von Beginn der Abscheidung der Proouticula bis zur Häutung verfolgt werden. Kurz vor Beginn der Cuticulaabscheidung kommt es in den Epidermiszellen zu einer stärkeren Entwicklung des rauhen ER. Während der gesamten von uns verfolgten Bildungsstadien sieht man Vesikel mit dichtem Inhalt besonders in der Nähe des Zellapex. Sie geben anscheinend hier ihren Inhalt, Cuticulamaterial, nach außen ab. Sie stammen wohl aus Golgibereichen. Auch Stachelsaumbläschen (coated vesicles) kommen regelmäßig vor, deren genetischer Zusammenhang mit multivesikulären Körpern diskutiert wird. Bei der Abscheidung der fibrillären Cuticulasubstanzen spielen besondere Differenzierungen der Zell oberfläche, — kappenartige Verdichtungen der Zelloberfläche, meist an der Spitze kleiner Mikrovilli — eine wesentliche Rolle.
The ultrastructure of cuticle and epidermis in the crayfish Crconectes limosus during a moulting cycle
Summary The cuticle of the inside and outside of the branchiostegites of the crayfish consists of an epicuticle and a procuticle — as common in arthropods. Concerning their ultrastructure epicuticle and procuticle differ essentially from each other on both the inside as well as the outside. On the inside the epicuticle is built plainly; the procuticle is laminated, and, mostly it shows the arched patterns of microfibrils. In those developmental stages investigated in this project the epicuticle of the outside shows a much more intricated ultrastructure, since during formation it is subject to certain changes. On the outside the procuticle is also laminated; the microfibrils are bundled up to bars. The alignment of those microfibrils within one lamella is twisted for 180°. The procuticle is penetrated by processes of epidermal cells and by rods of the so-called connecting structures.The formation of the cuticle on the inside was observed completely; it is comparable to the forming of the cuticle in several insects. However, the formation of the cuticle on the outside was only observed from the beginning of the procuticular development up to the moulting.Shortly before formation of the cuticle the development of rough ER in the epidermal cells seems to be intensified. In all of developmental stages observed there appear vesicles with dense contents mainly situated nearby the cell apex. At this site they evidently deliver their contents — cuticular materials — to the outside of the cell; they probably originate in the Golgi areas. There occur coated vesicles regularity, too; their genetic relation to multivesicular bodies is discussed. Special differentiation on the cell surface i.e. dome-like consolidations of the cell surface mainly placed at the tip of small microvilli are of great importance for the secretion of the cuticle substances.
  相似文献   
7.
新疆亚鳞木(比较种)角质层特征   总被引:2,自引:0,他引:2  
报道了产自江苏宜兴晚泥盆世五通组新疆亚鳞木(比较种)Sublepidodendron cf. xinjiangenseSun)的表皮角质层用荧光分析显示的特征.该种茎干表皮角质层覆于叶座及叶座间隔带,其中间隔带角质层厚于叶座.表皮细胞在间隔带与叶座表现特征不同.间隔带中部,表皮细胞呈纵长的多边形,其纵长方向与茎干延伸方向相同,细胞壁略有弯曲.间隔带靠近叶座之表皮细胞,细胞壁直,形状类似于前者;但大小仅为前者的1/2左右,且其纵长方向逐渐向叶座边缘偏转.叶座表皮细胞呈近等多边形,有胞间隙.该种茎表皮无气孔  相似文献   
8.
Expression of a 54 kDa tyrosyl phosphorylated protein in epidermal cells during the third instar larval stage was followed. It was demonstrated that the 54 kDa protein moiety and its phosphorylated counterpart follow the same developmental profile. The system seems to be regulated only at the onset of the second moult, by an initial signal which regulates both the synthesis and phosphorylation of a 54 kDa protein. The continuous presence this protein in epidermal cells during the third instar stage, as well as during apolysis and histolysis, suggests that it might participate in cell activities taking place during this developmental period. However, the 54 kDa protein could no be involved in specific epidermal cell activities such as histolysis, melanization and sclerotization, since these activities occur only at specific times during the third instar stage.  相似文献   
9.
Summary The developmental profile of the major haemolymph proteins (ceratitins) inCeratitis capitata was studied. Ceratitin concentration in the haemolymph decreases dramatically during the last days of pupal life, while the amounts of ceratitins in whole organism extracts remain unchanged. By electrophoretic, immunological and immunofluorescence techniques it was revealed that ceratitins are reabsorbed by the fat body and a fraction of them is deposited in the cuticle. The possible role of ceratitins is discussed.  相似文献   
10.
C Bordereau 《Tissue & cell》1982,14(2):371-396
The physogastric termite queen is the most striking example in insects of growth in size without cuticular moulting. This phenomenon has been studied with electron microscopy and histochemical tests in two species of higher termites, Cubitermes fungifaber and Macrotermes bellicosus. The abdominal hypertrophy (physogastry) is allowed by growth of the arthrodial membranes of the swarming imago. The growth is slow (over several years) but important: the cuticular dry weight is multiplied by 20 in C. fungifaber, by 100-150 in M. bellicosus. The termite queen cuticle arises from the transformation of the cuticle of the swarming imago or imaginal cuticle (unfolding and growing of the epicuticle, stretching of the endocuticle, resorption of the subcuticle) and from the secretion of a new endocuticle or royal endocuticle. The termite queen is the first example known in insects of epicuticular growth. In the physogastric queen, three cuticular types are observed: the rigid cuticle of the sclerites, the soft cuticle of the arthrodial membranes and the partially rigid cuticle of special structures, the neosclerites, which show both rigidity and growth. The fibrillar architecture varies according to the abdominal zones and the position within the cuticle. It appears to be determined by the forces arising from the musculature and the anisometric abdominal growth. The king does not become physogastric, although its cuticle is also modified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号