首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
 In the redox center of azurin, the Cu(II) is strongly coordinated to one thiolate S from Cys 112 and two imidazole Ns from His 46 and 117. This site yields a complex resonance Raman (RR) spectrum with >20 vibrational modes between 200 and 1500 cm–1. We have investigated the effects of ligand-selective isotope replacements on the RR spectrum of Pseudomonas aeruginosa azurin to determine the relative spectral contribution from each of the copper ligands. Growth on 34S-sulfate labels the cysteine ligand and allows the identification of a cluster of bands with Cu–S(Cys) stretching character between 370 and 430 cm–1 whose frequencies are consistent with the trigonal or distorted tetrahedral coordination in type 1 sites. In type 2 copper-cysteinate sites, the lower ν (Cu–S) frequencies between 260 and 320 cm–1 are consistent with square-planar coordination. Addition of exogenous 15N-labeled imidazole or histidine to the His117Gly mutant generates type 1 or type 2 sites, respectively. Because neither the above nor the His46Gly mutant reconstituted with 15N-imidazole exhibits significant isotope dependence, the histidine ligands can be ruled out as important contributors to the RR spectrum. Instead, a variety of evidence, including extensive isotope shifts upon global substitution with 15N, suggests that the multiple RR modes of azurin are due principally to vibrations of the cysteine ligand. These are resonance-enhanced through kinematic coupling with the Cu–S stretch in the ground state or through an excited-state A-term mechanism involving a Cu-cysteinate chromophore that extends into the peptide backbone. Received: 29 July 1996 / Accepted: 9 November 1996  相似文献   
2.
The mutation of the axial ligand of the type I copper protein amicyanin from Met to Lys results in a protein that is spectroscopically invisible and redox inactive. M98K amicyanin acts as a competitive inhibitor in the reaction of native amicyanin with methylamine dehydrogenase indicating that the M98K mutation has not affected the affinity for its natural electron donor. The crystal structure of M98K amicyanin reveals that its overall structure is very similar to native amicyanin but that the type I binding site is occupied by zinc. Anomalous difference Fourier maps calculated using the data collected around the absorption edges of copper and zinc confirm the presence of Zn2+ at the type I site. The Lys98 NZ donates a hydrogen bond to a well-ordered water molecule at the type I site which enhances the ability of Lys98 to provide a ligand for Zn2+. Attempts to reconstitute M98K apoamicyanin with copper resulted in precipitation of the protein. The fact that the M98K mutation generated such a selective zinc-binding protein was surprising as ligation of zinc by Lys is rare and this ligand set is unique for zinc.  相似文献   
3.
Electron transfer (ET) through and between proteins is a fundamental biological process. The activation energy for an ET reaction depends upon the Gibbs energy change upon ET (ΔG 0) and the reorganization energy. Here, we characterized ET from Pseudomonas aeruginosa cytochrome c 551 (PA) and its designed mutants to cupredoxins, Silene pratensis plastocyanin (PC) and Acidithiobacillus ferrooxidans rusticyanin (RC), through measurement of pseudo-first-order ET rate constants (k obs). The influence of the ΔG 0 value for ET from PA to PC or RC on the k obs value was examined using a series of designed PA proteins exhibiting a variety of E m values, which afford the ΔG 0 variation range of 58–399 meV. The plots of the k obs values obtained against the ΔG 0 values for both PA–PC and PA–RC redox pairs could be fitted well with a single Marcus equation. We have shown that the ET activity of cytochrome c can be controlled by tuning the E m value of the protein through the substitution of amino acid residues located in hydrophobic-core regions relatively far from the redox center. These findings provide novel insights into the molecular design of cytochrome c, which could be utilized for controlling its ET activity by means of protein engineering. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
Very little is known about the processes used by acidophile organisms to preserve stability and function of respiratory pathways. Here, we reveal a potential strategy of these organisms for protecting and keeping functional key enzymes under extreme conditions. Using Acidithiobacillus ferrooxidans, we have identified a protein belonging to a new cupredoxin subfamily, AcoP, for “acidophile CcO partner,” which is required for the cytochrome c oxidase (CcO) function. We show that it is a multifunctional copper protein with at least two roles as follows: (i) as a chaperone-like protein involved in the protection of the CuA center of the CcO complex and (ii) as a linker between the periplasmic cytochrome c and the inner membrane cytochrome c oxidase. It could represent an interesting model for investigating the multifunctionality of proteins known to be crucial in pathways of energy metabolism.  相似文献   
5.
M98Q amicyanin is isolated with zinc bound to its type 1 copper-binding site. The influence of the axial ligand of the type 1 copper site on metal specificity is strongest prior to the completion of protein folding and adoption of the final type 1 site geometry. The preference for zinc over copper correlated with the selectivity of apoamicyanin in vitro in the partially folded, rather than the completely folded state. These results suggest that metal incorporation in vivo occurs during protein folding in the periplasm and not to a preformed type 1 site.  相似文献   
6.
We have used low-temperature (77 K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak π-π interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500 cm−1 spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.3-0.8 cm−1) RR bands involving ν(Cu-S)Cys stretching modes. In contrast, the RR spectra of Met16 mutants with aliphatic amino acids revealed larger (0.2-1.8 cm−1) shifts of the ν(Cu-S)Cys stretching modes to a lower frequency region, which indicate a weakening of the Cu(II)-S(Cys) bond. Comparisons of the predominantly ν(Cu-S)Cys stretching RR peaks of the Met16X = Tyr, Trp, and Phe variants, with the molar absorptivity ratio ε1/ε2 of σ(∼455 nm)/π(∼595 nm) (Cys)S → Cu(II) charge-transfer bands in the optical spectrum and the axial/rhombic EPR signals, revealed a slightly more trigonal disposition of ligands about the copper(II) ion. In contrast, the RR spectra of Met16Z = Ala, Val, Leu, and Ile variants with aliphatic amino acid side chains show a more tetrahedral perturbation of the copper active site, as judged by the lower frequencies of the ν(Cu-S)Cys stretching modes, much larger values of the ε1/ε2 ratio, and the increased rhombicity of the EPR spectra.  相似文献   
7.
Nakamura K  Kawabata T  Yura K  Go N 《FEBS letters》2003,553(3):239-244
An analysis of the genome sequence database revealed novel types of two-domain multi-copper oxidases. The two-domain proteins have the conspicuous combination of blue-copper and inter-domain trinuclear copper binding residues, which is common in ceruloplasmin and ascorbate oxidase but not in nitrite reductase, and therefore are considered to retain the characteristics of the plausible ancestral form of ceruloplasmin and ascorbate oxidase. A possible evolutionary relationship of these proteins is proposed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号