首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The cold shock protein CspB shows a five-stranded beta-sheet structure, and it folds rapidly via a native-like transition state. A previous Phi value analysis showed that most of the residues with Phi values close to one reside in strand beta1, and two of them, Lys5 and Lys7 are partially exposed charged residues. To elucidate how coulombic interactions of these two residues contribute to the energetic organisation of the folding transition state we performed comparative folding experiments in the presence of an ionic denaturant (guanidinium chloride) and a non-ionic denaturant (urea) and a double-mutant analysis. Lys5 contributes 6.6 kJ mol(-1) to the stability of the transition state, and half of it originates from screenable coulombic interactions. Lys7 contributes 5.3 kJ mol(-1), and 3.4 kJ mol(-1) of it are screened by salt. In the folded protein Lys7 interacts with Asp25, and the screenable coulombic interaction between these two residues is fully formed in the transition state. This suggests that long-range coulombic interactions such as those originating from Lys5 and Lys7 of CspB can be important for organizing and stabilizing native-like structure early in protein folding.  相似文献   
2.
The effect of the polypeptide environment on polyalanine-induced fibril formation was investigated with amyloidogenic fragments from PAPBN1, a nuclear protein controlling polyadenylation. Mutation-caused extensions of the natural 10 alanine sequence up to maximally 17 alanines result in fibril formation of PABPN1 and the development of the disease oculopharyngeal muscular dystrophy (OPMD). We explored the influence of fibril formation on the structure and function of a one-domain protein linked to the fibril-forming part of PABPN1. The well-characterized, stably folded, one-domain protein, cold-shock protein CspB from Bacillus subtilis, was fused either to the C terminus of the entire N-terminal domain of PABPN1 or directly to peptides consisting of 10 or 17 alanine residues. The fusion protein between the N-terminal domain of PABPN1 and CspB formed fibrils in which the structure and activity of CspB were retained. In the fibrils formed by fusions in which the polyalanine sequence was directly linked to CspB, CspB was unfolded. These results indicate that the folded conformation and the function of a protein domain can be maintained in amyloid-like fibrils, and that the distance between this domain and the fibril plays an important role.  相似文献   
3.
It has been shown recently that an 11-residue peptide fragment of transthyretin, TTR(105-115), can form amyloid fibrils in vitro by adopting an extended beta-strand conformation. We used molecular dynamics simulations on systems of TTR(105-115) peptides, for a total length of about 5 micros, to explore the process of self-assembly and the structures of the resulting aggregates. Our results suggest that an antiparallel association of the beta-strands is more probable than a parallel one and that the central residues (T106-L111) in a beta-strand have a high propensity to form inter-peptide hydrogen bonds. The study of the dynamics of self-association indicated that, for this peptide, trajectories leading to conformations with high alpha-helical content are off-pathway from those leading to aggregates with high beta-structure content. We also show that the diverse oligomeric structures that form spontaneously in the molecular dynamics simulations are, to a large extent, compatible with solid-state NMR experimental measurements, including chemical shifts, on fully formed fibrils. The strategy that we present may therefore be used in the design of new experiments to determine the structure of amyloid fibrils, such as those involving site-specific isotope labelling schemes to measure key inter-atomic distances.  相似文献   
4.
Cold-shock proteins (CSPs) bind to single-stranded nucleic acids, thereby acting as a "RNA chaperone." To gain deeper insights into the rather unspecific nature of ssDNA/RNA binding, we characterized the binding interface of CspB from Bacillus subtilis to a 25-mer of ssDNA (Y-Box25) using heteronuclear 2D NMR spectroscopy. Seventeen residues, including eight out of nine aromatic amino acids, are directly involved in the Y-Box25 interaction and were identified by extreme line broadening of their cross-peaks. Eight residues belong to the earlier proposed RNP binding motifs. A second set of seven backbone amides becomes evident by major chemical shift perturbations reporting remote conformational rearrangements upon binding. These residues are located in loop beta3-beta4 and loopbeta4-beta5, and include Ile18. The individual contributions of the so-identified residues were examined by fluorescence titration experiments of 15 CspB variants. Phenylalanine substitutions in- and outside the RNP motifs significantly reduce the binding affinity. Unrestricted possible backbone conformations of loop beta3-beta4 also markedly contribute to binding. Stopped-flow fluorescence kinetics revealed that the different binding affinities of CspB variants are determined by the dissociation rate, whereas the association rate remains unchanged. This might be of importance for the "RNA chaperone" activity of CspB.  相似文献   
5.
Morra G  Hodoscek M  Knapp EW 《Proteins》2003,53(3):597-606
The cold shock protein from Bacillus caldolyticus is a small beta-barrel protein that folds in a two-state mechanism. For the native protein and for several mutants, a wealth of experimental data are available on stability and folding, so that it is an optimal system to study this process. We compare data from unfolding simulations (trajectories of 5 and up to 12 ns) obtained with a bias potential at room temperature and from unbiased thermal unfolding simulations with experimental data. The unfolding patterns derived from the trajectories starting from different native-like conformations and subject to different unfolding conditions agree. The transition state found in the simulations of unfolding is close to the native structure in agreement with experiment. Moreover, a lower value of the free energy barrier of unfolding was found for the mutant R3E than for the mutant E46A and the native protein, as indicated by experimental data. The first unfolding event involves the three-stranded beta-sheet whose decomposition corresponds to the transition state. In contrast to conclusions drawn from experiments, we found that the two-stranded beta-strand forms the most stable substructure, which decomposes very late in the unfolding process. However, assuming that this structure forms very early in the folding process, our findings would not contradict the experiments but require a different interpretation of them.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号