首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2008年   1篇
  1993年   2篇
  1989年   1篇
  1984年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   
2.
We describe a procedure for the rapid production and maintenance of fresh frozen bone biopsies which can be used for a variety of immunohistochemical techniques. Within 5 min of excision. tissue is placed in cold 5% polyvinyl alcohol, surrounded with 3% carboxymethylcel-lulose in a hand made aluminum foil embedding mold and frozen by immersion in an absolute ethanol/dry ice slurry at -70 C. The tissue block is attached to the specimen stub with cryocom-pound and installed in a -32 C cryostat whose tungsten carbide D profile knife is maintained at -70 C. Automatic controls are set at a slow cutting speed and the “sectioning window” is adjusted to fit the biopsy size. Knife angle, thickness gauge and antiroll bar are changed to produce a complete section. The block face is smoothly “papered” with a polyvinylpyrrolidone (PVP) impregnated Ross lens paper strip. A single section is cut and positioned on a sequentially numbered, acid cleaned, double dipped chrome-alum gelatin coated slide: adhesion is aided by “press-blotting” with bibulous paper. Sections are stored at -20 C or in a desiccator at room temperature. A brief fixation followed by removal of the water soluble PVP and lens paper generates fresh frozen bone sections suitable for further analysis.  相似文献   
3.
Summary The elemental composition of the morula cell of Halocynthia papillosa blood was studied by X-ray microanalysis with respect to the possible iron accumulation in this cell type. We found various amounts of Na, Mg, P, S, Cl, K, Ca, Fe and Br in the cytoplasm, nucleus and vacuoles. With the exception of a few cells, Ca, Fe and Br were not detected. Thus, the morula cells of the studied species are not iron-rich cells.  相似文献   
4.
Electron tomography of vitreous sections from cultured mammalian cells   总被引:2,自引:0,他引:2  
Cryo-electron tomography of appropriately thin, frozen-hydrated biological specimens has excellent potential for investigating the 3D macromolecular architecture of eukaryotic cells and tissues. Since cardiomyocytes are too thick to be visualised in an intact state, we grew immortalised cell line HL-1 to sub-confluency and harvested the cells by enzymatic detachment prior to hyperbaric freezing, ultramicrotomy, and tomography. We improved the efficiency of tomographic acquisition from vitreous cryosections by implementing two new features: (1) fluorescence microscopy at cryogenic temperatures to search for features of interest without expending any of the tolerable electron dose on secondary (non-imaging) tasks, and (2) the use of colloidal gold as fiducial markers. Vital fluorescent staining and subsequent cryo-fluorescence microscopy of vitreous sections were used to localise mitochondria lying in positions suitable for acquiring tilt series, taking into account section flatness, presence of contamination and proximity to grid bars. To provide a simple and robust means of aligning tomograms, we developed a universally applicable protocol for depositing colloidal gold onto vitreous sections, analogous to the method for applying quantum dots described by Masich et al. [Masich, S., Östberg, T., Norlén, L., Shupliakov, O., Daneholt, B., 2006. A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. J. Struct. Biol. 156, 461–468]. Tomograms of thin sections (nominal thickness 65–85 nm) of cardiac mitochondria revealed the interconnectivity of cristae and junctions with the inner mitochondrial membrane. In some cases, ATP synthases could be identified without ambiguity. These findings confirm the feasibility of investigating the structural biology of mammalian cells in three dimensions and at a resolution of 6–8 nm.  相似文献   
5.
Summary The chitin-binding lectin wheat germ agglutinin (WGA) is found at the periphery of wheat embryos, and a similar lectin is present at the root tips of older plants (Mishkind et al. 1982). Although a ferritin-conjugated secondary antibody is adequate for localizing WGA in embryos, native electron-opaque particles make the electron microscope identification of added label equivocal in other wheat tissues. As reported here, however, unambiguous ultrastructural localization of WGA-like lectin in adult wheat roots can be obtained with rabbit anti-WGA followed by colloidal gold-labeled goat anti-rabbit (GAR) IgG. Colloidal gold (CG) was prepared by the reduction of gold chloride with citrate, ascorbate or phosphorous. GAR IgG, prepared from serum by antigen affinity chromatograhy, was adsorbed to the gold particles to produce a stabilized suspension of GAR-CG. Localization was performed on 8–12 M frozen sections of tissue fixed in 4% paraformaldehyde, 0.3% glutaraldehyde, and 0.75% acrolein in phosphate-buffered saline containing 1M sucrose. Localization with GAR-CG was first compared to that ascertained in embryos using other probes and was then extended to the roots of adult plants. An advantage of the GARCG method is that it permits the visualization of antigen at both the light and electron microscope levels in the same section. At the light level, the anti-WGA-GAR-CG complex appears as a red stain that is localized in specific tissues of embryos and in the caps and outer layers of adult roots. Sections in which lectin was detected at the light microscope level were embedded in plastic and sectioned for subcellular examination. Electron dense gold particles indicative of WGA are found at the periphery of protein bodies in wheat embryos and in vacuoles of the roots of adult plants. Sections incubated with control IgG lack reaction product.  相似文献   
6.
The elementary composition [Na, Mg, P, S, Cl, K, Ca and Fe] of the tegument, tegumental spines, and subtegumental tissues of adult male and female Schistosoma mansoni have been determined by electron probe X-ray microanalysis of unfixed, freeze-dried cryosections. Statistical analysis of the results suggests that there are distinct differences in the elemental composition of the tissues both between and within individual male and female worms, and between male and female worms in general. In particular, there were significant variations in the elemental contents of the tissues between individual male and female worms, which may reflect differences in the physiology and/or metabolic state of the worms. Significant differences in the elemental composition of the various tissues examined within individual worms were also found. In general, in both male and female worms, there were significantly higher elemental levels in the tegument, as opposed to the subtegumental tissues. The elemental composition of the tegumental spines in both male and female worms differed from that of the tegumental cytoplasm, although the differences in the elemental composition between spines from male and female worms reflected the differences in the elemental content between the teguments themselves. Differences in the elemental composition of the tissues between male and female worms were also found, with the female tegument containing significantly higher elemental levels (with the exception of Cl) than the male tegument. In particular, the tegument of female worms contained higher levels of calcium and, in relatively small areas, isolated calcium-containing granules. This higher tegumental calcium level in female worms may reflect a higher calcium demand by sexually mature female worms due to the presence, within the mature vitelline cells, of calcium-containing corpuscles and the production of large numbers of eggs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号