首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   4篇
  2018年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Although northern peatlands contribute significantly to natural methane emissions, recent studies of the importance and type of methanogenesis in these systems have provided conflicting results. Mechanisms controlling methanogenesis in northern peatlands remain poorly understood, despite the importance of methane as a greenhouse gas. We used 16S rRNA gene retrieval and denaturing gradient gel electrophoresis (DGGE) to analyse archaeal communities in 15 high-latitude peatland sites in Alaska and three mid-latitude peatland sites in Massachusetts. Archaeal community composition was analysed in the context of environmental, vegetation and biogeochemical factors characterized in a parallel study. Phylogenetic analysis revealed that Alaskan sites were dominated by a cluster of uncultivated crenarchaeotes and members of the families Methanomicrobiaceae and Methanobacteriaceae, which are not acetoclastic. Members of the acetoclastic family Methanosarcinaceae were not detected, whereas those of the family Methanosaetaceae were either not detected or were minor. These results are consistent with biogeochemical evidence that acetoclastic methanogenesis is not a predominant terminal decomposition pathway in most of the sites analysed. Ordination analyses indicated a link between vegetation type and archaeal community composition, suggesting that plants (and/or the environmental conditions that control their distribution) influence both archaeal community activity and dynamics.  相似文献   
2.
In this paper, we report the identification and first characterization of a novel, cold-loving, prokaryotic community thriving among white-greenish 'streamers' in the cold (c. 10 degrees C) sulphurous water of the marsh Sippenauer Moor near Regensburg, Bavaria, Germany. It consists of the bacterial genus Thiothrix, the bacterium 'Sip100' and one archaeal representative, forming together a unique association structure with a distinct life cycle. Fluorescence in situ hybridization studies have revealed that the archaeal member can be affiliated to the crenarchaeal kingdom ('Cre1'). This crenarchaeon was always observed attached to the bacterial community member 'Sip100'. Extended fluorescence in situ hybridization studies showed that this crenarchaeon was not detected in a free-living form, raising the idea of a probable host-dependent relationship. In line with our fluorescence in situ hybridization studies, novel crenarchaeal 16S rRNA gene sequences were identified in these samples. The design and application of a new in situ cultivation method in the sulphurous water of the marsh allowed first insights into the cohesion mechanisms, lifestyle and chronology of the microbes involved in this prokaryotic community in nature. Our results suggest that hitherto unknown Crenarchaeota thrive in cold sulphidic water and are a substantial part of a synchronized microbial community.  相似文献   
3.
Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.  相似文献   
4.
5.
Using a polyphasic approach, we examined the presence of Archaea in the Gulf of Aqaba, a warm marine ecosystem, isolated from major ocean currents and subject to pronounced seasonal changes in hydrography. Catalyzed reported deposition FISH analyses showed that Archaea make up to >20% of the prokaryotic community in the Gulf. A spatial separation between the two major phyla of Archaea was observed during summer stratification. Euryarchaeota were found exclusively in the upper 200 m, whereas Crenarchaeota were present in greater numbers in layers below the summer thermocline. 16S rRNA gene-based denaturing gradient gel electrophoresis confirmed this depth partitioning and revealed further diversity of Crenarchaeota and Euryarchaeota populations along depth profiles. Phylogenetic analysis showed pelagic Crenarchaeota and Euryarchaeota to differ from coral-associated Archaea from the Gulf, forming distinct clusters within the Marine Archaea Groups I and II. Endsequencing of fosmid libraries of environmental DNA provided a tentative identification of some members of the archaeal community and their role in the microbial community of the Gulf. Incorporation studies of radiolabeled leucine and bicarbonate in the presence of different inhibitors suggest that the archaeal community participates in autotrophic CO2 uptake and contributes little to the heterotrophic activity.  相似文献   
6.
中国和美国原始土壤中非高温泉古菌的发现和鉴定   总被引:2,自引:0,他引:2  
近年来在非极端环境中已经发现有古菌(Archaea)的存在, 但在中国原始土壤中还未见报道。本研究的目的是调查古菌是否存在于两个分别取自中国新疆和广西的土壤及两个美国亚利桑那州南部地区的土壤中。我们分别构建了这四个原始土壤的古菌16S rDNA文库并对28个克隆的16S rDNA进行了鉴定。所有这些16S rDNA的序列都归类于古菌的泉古菌门(Crenarchaeota)。进化树分析表明, 这些泉古菌的16S rDNA属于非高温陆地环境中的泉古菌种群, 明显区别于海洋和淡水地带的泉古菌种群。这个泉古菌种群又有两个分支, 这两个分支在16S rDNA序列上和G C含量上有明显的区别。本研究在两个中国和两个美国原始土壤中鉴定了非高温泉古菌的存在, 由此证明泉古菌的存在范围不只局限于高温等极端环境。另外, 美国原始土壤中的泉古菌只属于一个进化分支, 这说明非高温泉古菌种群的类型和土壤的地理位置及土壤特性有关。  相似文献   
7.
This minireview summarizes what is known about genetic elements in the archaeal crenarchaeotal genus Sulfolobus, including recent work on viruses, cryptic plasmids, a novel type of virus satellite plasmids or satellite viruses, and conjugative plasmids (CPs), mostly from our laboratory. It does not discuss IS elements and transposons. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   
8.
AIMS: The suitability of genetic fingerprinting to study the microbiological basis of anaerobic bioreactor failure is investigated. METHODS AND RESULTS: Two laboratory-scale anaerobic expanded granular sludge bed bioreactors, R1 and R2, were used for the mesophilic (37 degrees C) treatment of high-strength [10 g chemical oxygen demand (COD) l(-1)] synthetic industrial-like wastewater over a 100-day trial period. A successful start up was achieved by both bioreactors with COD removal over 90%. Both reactors were operated under identical parameters; however, increased organic loading during the trial induced a reduction in the COD removal of R1, while R2 maintained satisfactory performance (COD removal >90%) throughout the experiment. Specific methanogenic activity measurements of biomass from both reactors indicated that the main route of methane production was hydrogenotrophic methanogenesis. Terminal restriction fragment length polymorphism (TRFLP) analysis was applied to the characterization of microbial community dynamics within the system during the trial. The principal differences between the two consortia analysed included an increased abundance of Thiovulum- and Methanococcus-like organisms and uncultured Crenarchaeota in R1. CONCLUSIONS: The results indicated that there was a microbiological basis for the deviation, in terms of operational performance, of R1 and R2. SIGNIFICANCE AND IMPACT OF THE STUDY: High-throughput fingerprinting techniques, such as TRFLP, have been demonstrated as practically relevant for biomonitoring of anaerobic reactor communities.  相似文献   
9.
一个新的古菌类群———奇古菌门(Thaumarchaeota)   总被引:7,自引:0,他引:7  
基于16S rRNA基因的系统发育关系,古菌域(Archaea)被分为两个主要类群:广古菌门(Euryarchaeota)和泉古菌门(Crenarchaeota)。近20年来,微生物分子生态学技术的快速发展和应用显示,在中温环境中广泛存在着大量的未培养古菌,而且它们可能在自然界重要元素(N、C)的生物地球化学循环中发挥着重要作用。最初,这些未培养古菌因在16S rRNA基因系统发育上与泉古菌关系较密切而被称作中温泉古菌(non-thermophilic Crenarchaeota)。而近年来,对更多新发现的中温古菌核糖体RNA基因序列和其它分子标记物进行的分析均不支持中温泉古菌由嗜热泉古菌进化而来的假设,而揭示其可能代表古菌域中一个独立的系统发育分支。基因组学、生理生态特征等分析也显示中温泉古菌与泉古菌具有明显不同的特征。因而专家建议将这些古菌(中温泉古菌)划分为一个新的门,成为古菌域的第三个主要类群—Thaumarchaeota(意译为奇古菌门)。这一新古菌门提出后得到其他研究证据的支持和认可。本文对目前已知的奇古菌门的分类地位演化、基因组学、多样性和生理代谢特征等作一简要综述。  相似文献   
10.
Archaea are known to play important roles in carbon cycling in marine sediments. The main compositions of archaeal community in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1 cm-, 3 cm-, 6 cm-, 10 cm-, 12 cm- layer) of the 12 cm sediment core of WP-0 were checked and compared by denaturing gradient gel electrophoresis and 16 S rRNA gene sequencing. It was revealed that all the deep-sea sediment samples checked contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. To further detect groups of archaea possibly relating with C1 metabolism, PCR amplification was carried out using primers targeting methane-oxidizing archaea. Although no methane-oxidizing archaea was detected, a group of novel archaea (named as WPA) was instead identified from all these five WP samples by clone analysis. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. The vertical distributions of WPA, archaea and bacteria along the WP-0 sediment column were determined by quantitative-PCR. It was found that bacteria dominated at all depths, the numbers of bacteria were 10–104 times more than those of archaea. The proportion of archaea versus bacteria had a depth related increasing tendency, it was lowest at the first layer (0.01%), reached highest at the 12 cm- layer (10%). WPA only constituted a small proportion of the archaeal community (0.05% to 5%) of west Pacific Warm Pool sediment.Peng Wang and Xiang Xiao contributed equally to this paper  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号