首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2009年   2篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
2.
The sugar conducting phloem in angiosperms is a high resistance pathway made up of sieve elements bounded by sieve plates. The high resistance generated by sieve plates may be a trade‐off for promoting quick sealing in the event of injury. However, previous modeling efforts have demonstrated a wide variation in the contribution of sieve plates towards total sieve tube resistance. In the current study, we generated high resolution scanning electron microscope images of sieve plates from balsam poplar and integrated them into a mathematical model using Comsol Multiphysics software. We found that sieve plates contribute upwards of 85% towards total sieve tube resistance. Utilizing the Navier–Stokes equations, we found that oblong pores may create over 50% more resistance in comparison with round pores of the same area. Although radial water flows in phloem sieve tubes have been previously considered, their impact on alleviating pressure gradients has not been fully studied. Our novel simulations find that radial water flow can reduce pressure requirements by half in comparison with modeled sieve tubes with no radial permeability. We discuss the implication that sieve tubes may alleviate pressure requirements to overcome high resistances by regulating their membrane permeability along the entire transport pathway.  相似文献   
3.
Non-sprouting angiogenesis, also known as intussusceptive angiogenesis (IA), is an important modality of blood vessel morphogenesis in growing tissues. We present a novel computational framework for simulation of IA to answer some of the questions concerning the underlying mechanisms of the remodeling process. The model relies on mechanical interactions between blood and tissue, includes the structural maturation of the vessel wall, and is controlled by stimulating or inhibiting chemical agents. The model provides a simple explanation for the formation of microvessels and bifurcations from capillaries via IA, allowing for both maintenance and avoidance of shunt vessels. Detailed hemodynamic and transport properties for oxygen, metabolites or growth factors can be predicted. The model is an in silico framework for testing certain conceptual ideas about the mechanisms of intussusceptive growth and remodeling, in particular those related to mechanical and transport phenomena.  相似文献   
4.
A multiphysics model concerning the diffusion and enzyme reaction simultaneously is developed in this paper to characterize the equilibrium behavior of the glucose-sensitive hydrogel, which is called the multi-effect-coupling glucose-stimulus (MECglu) model. The responsive behavior of the hydrogel in the chemo-electro-mechanical coupled energy domains is modeled by the nonlinear coupled partial differential equations. They include the Nernst–Planck equations for the diffusion of mobile species and the enzyme reaction catalyzed by the glucose oxidase and the catalase, the Poisson equation for electric potential, and the mechanical equilibrium equation for finite deformation of the glucose-oxidase-loaded pH-sensitive hydrogel. Numerical simulations demonstrate that the MECglu model can consist well with the published experiment for the practical physiological glucose concentration ranging from 0 to 16.5 mM (300 mg/ml). The effect of Young's modulus of the hydrogel is investigated on the distributive concentrations of reacting and diffusive species and the deformation of the glucose-sensitive hydrogels.  相似文献   
5.
Aortic valve tissue exhibits highly nonlinear, anisotropic, and heterogeneous material behavior due to its complex microstructure. A thorough understanding of these characteristics permits us to develop numerical models that can shed insight on the function of the aortic valve in health and disease. Herein, we take a closer look at consistently capturing the observed physical response of aortic valve tissue in a continuum mechanics framework. Such a treatment is the first step in developing comprehensive multiscale and multiphysics models.We highlight two important aspects of aortic valve tissue behavior: the role of the collagen fiber microstructure and the native prestressing. We propose a model that captures these two features as well as the heterogeneous layer-scale topology of the tissue. We find the model can reproduce the experimentally observed multiscale mechanical behavior in a manner that provides intuition on the underlying mechanics.  相似文献   
6.
In this paper, effects of a brain tumor located in a dispersive human head model on specific absorption rate (SAR) and temperature rise distributions due to different types of RF sources at 4G and 5G cellular frequencies are investigated with the use of a multiphysics model. This multiphysics model analyzes the dispersive human head with the brain tumor and provides the SAR and temperature rise distributions in the head due to the RF source operated at 4G and 5G cellular frequencies in a single finite-difference time-domain simulation. An adjacent antenna operated at 4G and 5G cellular frequencies to the human head is considered as the RF source for near-field exposure, while a plane wave field radiated by base stations operated at 4G and 5G cellular frequencies is considered as the RF source for far-field exposure. Numerical results show that the brain tumor in the head slightly affects the SAR and temperature rise distributions due to different RF sources at 4G and 5G cellular frequencies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号