首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   34篇
  国内免费   1篇
  325篇
  2023年   4篇
  2022年   10篇
  2021年   32篇
  2020年   27篇
  2019年   7篇
  2018年   10篇
  2017年   18篇
  2016年   18篇
  2015年   15篇
  2014年   33篇
  2013年   32篇
  2012年   22篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   17篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   2篇
  1996年   1篇
  1995年   5篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
1.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   
2.
Computed tomography and automated image analysis of prehistoric femora   总被引:1,自引:0,他引:1  
Non-invasive characterization of limb bone cross-sectional geometry would be useful for biomechanical analyses of skeletal collections. Computed tomography (CT) is potentially the method of choice. Additionally, CT images are suitable for automated analysis. CT is here shown to be both accurate and precise in the analysis of cross-sectional geometry of prehistoric femora. Beam hardening artifacts can be reduced by using a water bath. As the availability of CT for research increases, both bone density and geometry could be determined simultaneously with this method.  相似文献   
3.
M Westphal  R G Hammonds  C H Li 《Peptides》1985,6(1):149-152
Dermorphin and a camel beta-endorphin (beta c-EP) analog in which residues 1-7 correspond to the dermorphin sequence ([Dermorphin1-7]-beta c-EP) have been investigated with respect to their receptor binding characteristics using human and camel beta-EP as reference peptides. Tritiated dihydromorphine, [D-Ala2, D-Leu5]-enkephalin, ethylketocyclazocine and human beta-endorphin were used as primary ligands in the rat brain membrane preparation for radioreceptor assay. Camel beta-endorphin was the most potent peptide in all experiments. [Dermorphin1-7]-beta c-EP is significantly less potent towards 3H-ethylketocyclazocine and 3H-[D-Ala2, D-Leu5]-enkephalin but is as potent towards 3H-dihydromorphine and 3H-human beta-endorphin. Dermorphin itself weakly displaces tritiated dihydromorphine, [D-Ala2, D-Leu5]-enkephalin and ethylketocyclazocine (potency relative to camel beta-EP, 1-4%) but it is more potent (9%) in competition with tritiated human beta-endorphin. Dermorphin and the [Dermorphin-1-7]-beta c-EP appear to interact preferentially with mu opiate receptors.  相似文献   
4.
THELASERTOMOGRAPHICALMETHODUSINGMINIMUMOFPROJECTIONFORBIOLOGICALOBJECTSTRUCTURESTUDYYuriN.Kulchin;OlegB.Vitrik;OlegV.Kirichei...  相似文献   
5.
将谱域光学相干层析技术(Spectral-domain Optical Coherence Tomography,SD-OCT)应用于细胞膜厚的动态检测,引入了光谱干涉测量方法,通过对干涉光谱信号进行离散傅里叶变换得到表示物体深度位置信息的光程差信号。搭建了一套SD-OCT测量系统并设计了专门用于细胞检测的样品平台,检测精度达到μm量级,信噪比达70 db,是一种快速、实时、非接触的细胞分子膜厚动态检测技术。  相似文献   
6.
目的应用MSCT-3D显示技术比较正常贵州香猪、Marshall比格犬、恒河猴与人上肢带骨及躯干骨的形态学差异。方法采用MSCT分别对贵州香猪、比格犬和恒河猴进行CT全身扫描并进行图像重建,观察其上肢带骨、躯干骨形态结构与人的异同。结果比格犬、恒河猴、贵州香猪脊椎骨和肋的基本组成与人相同,脊椎骨由椎体和附件组成,肋骨包括真肋、假肋和浮肋。而脊柱曲度、各段椎骨数目、胸骨结构、肋的数目、胸肋连接、上肢带骨的组成与人不同,恒河猴的脊柱曲度和上肢带骨连接与人相同,有颈、胸、腰、骶四个生理性弯曲并由锁骨和肩胛骨共同连接自由上肢骨,比格犬和贵州香猪只有颈、胸腰、骶三个生理性弯曲,仅由肩胛骨连接自由上肢骨。结论恒河猴躯干骨和上肢带骨与人有良好的相似性,而比格犬和贵州香猪与人差别较大。MSCT-3D技术为实验动物形态学比较研究提供了一种相对无创、快速、可以在体研究并动态连续观察的科学有效方法。  相似文献   
7.
陈小玲  谢琦  韦程纲 《生物磁学》2009,(13):2528-2530
目的:对比300 mgI.ml-1对比剂与400 mgI.ml-1对比剂对肾脏多层面CT(multislice CT,MSCT)多期增强扫描的强化作用及不良反应。材料与方法:68例腹部CT受检者随机分成两组各34例,分别给予肾脏平扫和典比乐300(300 mgI.ml-1)与碘迈伦400(400 mgI.ml-1)的多期增强MSCT扫描(在对比剂开始注射后18s、30 s、80 s、3 min~5 min),测量各期增强扫描腹主动脉、双肾动脉、双肾静脉、双肾皮质、双肾髓质、双肾盂的CT强化值。观察对比剂的不良反应。结果:使用400 mgI.ml-1对比剂在18s与30s采集,所检测的血管与肾各结构强化均值有意义高于300 mgI.ml-1对比剂(p〈0.01),80 s采集,肾动脉、肾静脉、肾髓质强化均值有意义高于300 mgI.ml-1对比剂(p〈0.01),3 min~5 min采集,肾静脉与肾盂强化均值有意义高于300 mgI.ml-1对比剂(p〈0.01)。结论:高碘浓度对比剂对肾脏各解剖结构的显示优于标准碘浓度对比剂,并可降低对比剂用量,而不良反应并无增加。  相似文献   
8.
Medical imaging using X-rays has been one of the most popular imaging modalities ever since the discovery of X-rays 125 years ago. With unquestionable benefits, concerns about radiation risks have frequently been raised. Computed tomography (CT) and fluoroscopic guided interventional procedures have the potential to impart higher radiation exposure to patients than radiographic examinations. Despite technological advances, there have been instances of increased doses per procedure mainly because of better diagnostic information in images. However, cumulative dose from multiple procedures is creating new concerns as effective doses >100 mSv are not uncommon. There is a need for action at all levels. Manufacturers must produce equipment that can provide a quality diagnostic image at substantially lesser dose and better implementation of optimization strategies by users. There is an urgent need for the industry to develop CT scanners with sub-mSv radiation dose, a goal that has been lingering. It appears that a new monochromatic X-ray source will lead to replacement of X-ray tubes all over the world in coming years and will lead to a drastic reduction in radiation doses. This innovation will impact all X-ray imaging and will help dose reduction. For interventional procedures, the likely employment of robotic systems in practice may drastically reduce radiation exposures to operators- but patient exposure will still remain an issue. Training needs always need to be emphasized and practiced.  相似文献   
9.
PurposeA novel fast kilovoltage switching dual-energy CT with deep learning [Deep learning based-spectral CT (DL-Spectral CT)], which generates a complete sinogram for each kilovolt using deep learning views that complement the measured views at each energy, was commercialized in 2020. The purpose of this study was to evaluate the accuracy of CT numbers in virtual monochromatic images (VMIs) and iodine quantifications at various radiation doses using DL-Spectral CT.Materials and methodsTwo multi-energy phantoms (large and small) using several rods representing different materials (iodine, calcium, blood, and adipose) were scanned by DL-Spectral CT at varying radiation doses. Images were reconstructed using three reconstruction parameters (body, lung, bone). The absolute percentage errors (APEs) for CT numbers on VMIs at 50, 70, and 100 keV and iodine quantification were compared among different radiation dose protocols.ResultsThe APEs of the CT numbers on VMIs were <15% in both the large and small phantoms, except at the minimum dose in the large phantom. There were no significant differences among radiation dose protocols in computed tomography dose index volumes of 12.3 mGy or larger. The accuracy of iodine quantification provided by the body parameter was significantly better than those obtained with the lung and bone parameters. Increasing the radiation dose did not always improve the accuracy of iodine quantification, regardless of the reconstruction parameter and phantom size.ConclusionThe accuracy of iodine quantification and CT numbers on VMIs in DL-Spectral CT was not affected by the radiation dose, except for an extremely low radiation dose for body size.  相似文献   
10.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号