首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   2篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   8篇
  2010年   12篇
  2009年   7篇
  2008年   14篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1980年   1篇
排序方式: 共有103条查询结果,搜索用时 312 毫秒
1.
Social insects such as ants use trial-marking and trail-following to organize the behaviour and movement patterns of a large population. Since behaviour has to meet needs of the population in a changing environment, the type of trail networks formed must be adaptable. Both solitary foraging as well as mass migration along a system of trunk trails are behaviours essential for survival of the colony, and the population must be able to switch from one behaviour to the other, depending on conditions. Using a mathematical model for trail following we show that subtle changes in individual behaviour can give rise to dramatic differences in the behaviour of the population, including the ability to switch from solitary movement to organized group traffic. The model incorporates biological parameters associated with the organism, the trail-marker, and the population. Ordinary differential equations are formulated for the density of the trails and for the number of individuals following trails or exploring randomly. It is assumed that the followers reinforce trails by pheromone marking, and that individuals respond to the strength of the trails by becoming more efficient followers. The model is analyzed by qualitative phase-plane methods.  相似文献   
2.
3.
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.  相似文献   
4.
《Chronobiology international》2013,30(10):1336-1344
Arachnocampa species, commonly called glowworms, are flies whose larvae use light to attract prey. Here we compare rhythmicity in two of the nine described species: the Tasmanian species, Arachnocampa tasmaniensis, which inhabits caves and wet forest, and the eastern Australian mainland species, A. flava, primarily found in subtropical rainforest. Both species show the same nocturnal glowing pattern in external (epigean) environments and the same inhibition of bioluminescence by light and both species show circadian regulation of bioluminescence. We find that the underlying circadian bioluminescence propensity rhythm (BPR) of the two species peaks at opposite phases of the day:night cycle. Larvae of A. flava, placed in constant darkness in the laboratory, bioluminesce during the subjective scotophase, typical of nocturnal animals, whereas A. tasmaniensis shows the opposite tendency, bioluminescing most intensely during the subjective photophase. In A. tasmaniensis, which are exposed to natural day:night cycles, light exposure during the day overrides the high bioluminescence propensity through negative masking and leads to a release of bioluminescence after dusk when the BPR is on the wane. A consequence is that A. tasmaniensis is able to start glowing at any phase of the light:dark cycle as soon as masking by light is released, whereas A. flava is locked into nocturnal bioluminescence. We suggest that the paradoxical BPR of A. tasmaniensis is an adaptation for living in the cave environment. Observations of bioluminescence in colonies of A. tasmaniensis located in the transition from a cave mouth to the dark zone show that glowing is inhibited by light exposure but a peak bioluminescence follows immediately after “dusk” at their location. The substantial difference in the circadian regulation of bioluminescence between the two species probably reflects adaptation to the cave (hypogean) habitat in A. tasmaniensis and the forest (epigean) habitat in A. flava. (Author correspondence: )  相似文献   
5.
Like any other society France is increasingly diversified culturally and in terms of collective identities. Clearly it is a multicultural, multi-identificational society, but it is not often willing to discuss openly the changes needed to accommodate its diversity and its de facto multicultural character. Michel Wieviorka has been courageous in trying to launch this crucial debate. In France his work is often appreciated but it is also often held to be ‘politically incorrect’ precisely because it questions the validity of the French republican model and its adequacy for the deep social changes at work in French society, and also because it raises the issue of the necessity of building a French multiculturalism. In this article the most important insights of Wieviorka's perspectives on multiculturalism are presented and some of the problems it implies are discussed.  相似文献   
6.
This study investigates how epithelial cells moving together function to coordinate their collective movement to repair a wound. Using a lens ex vivo mock cataract surgery model we show that region-specific reorganization of cell–cell junctions, cytoskeletal networks and myosin function along apical and basal domains of an epithelium mediates the process of collective migration. An apical junctional complex composed of N-cadherin/ZO-1/myosin II linked to a cortical actin cytoskeleton network maintains integrity of the tissue during the healing process. These cells’ basal domains often preceded their apical domains in the direction of movement, where an atypical N-cadherin/ZO-1 junction, linked to an actin stress fiber network rich in phosphomyosin, was prominent in cryptic lamellipodia. These junctions joined the protruding forward-moving lamellipodia to the back end of the cell moving directly in front of it. These were the only junctions detected in cryptic lamellipodia of lens epithelia migrating in response to wounding that could transmit the protrusive forces that drive collective movement. Both integrity of the epithelium and ability to effectively heal the wound was found to depend on myosin mechanical cues.  相似文献   
7.
Photosystem II, being a constituent of light driven photosynthetic apparatus, is a highly organized pigment-protein-lipid complex. The arrangement of PSII active redox cofactors insures efficiency of electron transfer within it. Donation of electrons extracted from water by the oxygen evolving complex to plastoquinones requires an additional activation energy. In this paper we present theoretical discussion of the anharmonic fluctuations of the protein-lipid matrix of PSII and an experimental evidence showing that the fluctuations are responsible for coupling of its donor and acceptor side. We argue that the fast collective motions liberated at temperatures higher that 200 K are crucial for the two final steps of the water splitting cycle and that one can distinguish three different dynamic regimes of PSII action which are controlled by the timescales of forward electron transfer, which vary with temperature. The three regimes of the dynamical behavior are related to different spatial domains of PSII.  相似文献   
8.
Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.  相似文献   
9.

Background

The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen.

Results

Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion.

Conclusions

The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.  相似文献   
10.
Availability of certain habitats or landscape configurations can cause differential habitat selection in animal species. Landscape complexity can affect foraging scales, home ranges and movement, but its effect on habitat selection is not well documented. We aimed to examine differences in colony site selection of herons and egrets in different regions. We studied whether landscape complexities could affect their scale of selection and habitat preferences. We used colony distribution data and land-use maps for two neighboring regions, Ibaraki and Chiba prefectures in Japan, to create random forest models for analyzing habitat preferences and important scales of selection. We did cross-validation of the models, adjusted for its respective region's land-use maps with changing scales. The scales that best explained colony distribution were 1-, 4-, 10- and 15-km in the Ibaraki region, and 1- and 10-km in the Chiba region. Evergreen forest was the most important variable for Ibaraki at 4-km and for the Chiba at 1-km. The importance of other variables differed for other models. Cross-validation showed that herons and egrets had the same habitat preferences at a 4-km scale in Ibaraki and at a 1-km scale in Chiba. The scale of selection was reduced in Chiba, where the main foraging resources for herons and egrets was more complex. Differences in landscape complexities did not affect habitat preferences but resulted in differences in the scale of selection. Habitat selection models created at the landscape level can be useful to study behavioral aspects difficult to describe with direct observation in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号